
Agnieszka WrÃ³blewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of Geraniol into Useful Value-Added Products in the Presence of Catalysts of Natural Origin: Diatomite and Alum. Materials, 2022, 15, 2449.	1.3	3
2	Synthesis, characterization and application of the SBA-16 catalyst modified with titanium(IV) chloride in the eugenol isomerization. Microporous and Mesoporous Materials, 2021, 311, 110685.	2.2	6
3	Epoxidation of 1,5,9-cyclododecatriene with hydrogen peroxide under phase-transfer catalysis conditions: influence of selected parameters on the course of epoxidation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 983-1001.	0.8	5
4	Polysaccharide films modified by compounds of natural origin and silver having potential medical applications. Cellulose, 2021, 28, 7257-7271.	2.4	4
5	Clinoptilolite as a natural, active zeolite catalyst for the chemical transformations of geraniol. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 997-1011.	0.8	8
6	Sulfuric acid modified clinoptilolite as a solid green catalyst for solvent-free α-pinene isomerization process. Microporous and Mesoporous Materials, 2021, 324, 111266.	2.2	22
7	Epoxidation of 1,5,9-Cyclododecatriene with Hydrogen Peroxide over Ti-MCM-41 Catalyst. Catalysts, 2021, 11, 1402.	1.6	3
8	The Studies on α-Pinene Oxidation over the TS-1. The Influence of the Temperature, Reaction Time, Titanium and Catalyst Content. Materials, 2021, 14, 7799.	1.3	7
9	Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene. Materials, 2021, 14, 7811.	1.3	10
10	Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks—Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. Materials, 2021, 14, 7448.	1.3	8
11	UV Curable Coatings Based on Urethane Acrylates Containing Eugenol and Evaluation of Their Antimicrobial Activity. Coatings, 2021, 11, 1556.	1.2	4
12	FeCl3-Modified Carbonaceous Catalysts from Orange Peel for Solvent-Free Alpha-Pinene Oxidation. Materials, 2021, 14, 7729.	1.3	3
13	Influence of Technological Parameters on the Isomerization of Geraniol Using Sepiolite. Catalysis Letters, 2020, 150, 901-911.	1.4	14
14	Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters, 2020, 30, 189-198.	3.3	11
15	High catalytic performance of 2D Ti3C2Tx MXene in α-pinene isomerization to camphene. Applied Catalysis A: General, 2020, 604, 117765.	2.2	13
16	Synthesis, Characterization, and Catalytic Applications of the Ti-SBA-16 Porous Material in the Selective and Green Isomerizations of Limonene and S-Carvone. Catalysts, 2020, 10, 1452.	1.6	5
17	The isomerization of S-carvone over the natural clinoptilolite as the catalyst: the influence of reaction time, temperature and catalyst content. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 273-288.	0.8	2
18	The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of α-pinene. Microporous and Mesoporous Materials, 2020, 305, 110384.	2.2	15

#	Article	IF	CITATIONS
19	Isomerization and Dehydroaromatization of R(+)-Limonene Over the Ti-MCM-41 Catalyst: Effect of Temperature, Reaction Time and Catalyst Content on Product Yield. Catalysts, 2019, 9, 508.	1.6	16
20	Isomerization of limonene over natural zeolite-clinoptilolite. Clay Minerals, 2019, 54, 121-129.	0.2	14
21	Influence of the Titanium Content in the Ti-MCM-41 Catalyst on the Course of the α-Pinene Isomerization Process. Catalysts, 2019, 9, 396.	1.6	24
22	Healing properties of geraniol – a review of the literature. Pomeranian Journal of Life Sciences, 2019, 65, 24-28.	0.1	2
23	Effect of extraction method on the antioxidative activity of ground elder (<i>Aegopodium podagraria) Tj ETQq1</i>	1 0,784314 0.3	∔rgBT /Overl
24	Microbiological Tests of Natural Limonene and the Compounds Obtained after Isomerization of Limonene in the Presence of Ti-SBA-15 Catalyst-α-Terpinene, γ-Terpinene, Terpinolene, and p-Cymene. Journal of Cosmetic Science, 2019, 70, 137-147.	0.1	1
25	Limonene oxidation over Ti-MCM-41 and Ti-MWW catalysts with t-butyl hydroperoxide as the oxidant. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 523-543.	0.8	12
26	Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Microporous and Mesoporous Materials, 2018, 258, 72-82.	2.2	32
27	Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 843-858.	0.8	7
28	Environmental friendly method of the epoxidation of limonene with hydrogen peroxide over the Ti-SBA-15 catalyst. Polish Journal of Chemical Technology, 2018, 20, 6-12.	0.3	4
29	Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst. Polish Journal of Chemical Technology, 2018, 20, 1-6.	0.3	2
30	Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catalysis Letters, 2017, 147, 150-160.	1.4	16
31	Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Applied Surface Science, 2017, 420, 873-881.	3.1	28
32	Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Processing and Synthesis, 2017, 6, .	1.3	9
33	Fragrant films on the basis of potato starch. Polish Journal of Chemical Technology, 2017, 19, 88-92.	0.3	2
34	Fragrant starch-based films with limonene. Current Chemistry Letters, 2017, , 41-48.	0.5	8
35	The Isomerization of Limonene over the Ti-SBA-15 Catalyst—The Influence of Reaction Time, Temperature, and Catalyst Content. Catalysts, 2017, 7, 273.	1.6	18
36	Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst. Current Chemistry Letters, 2017, , 7-14.	0.5	3

#	Article	IF	CITATIONS
37	Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene. Polish Journal of Chemical Technology, 2017, 19, 50-58.	0.3	8
38	Studies on Obtaining Diglycidyl Ether from Allyl-Glycidyl Ether over the Mesoporous Ti-SBA-15 Catalyst. , 2016, , .		1
39	Epoxidation of allyl-glycidyl ether with hydrogen peroxide over Ti-SBA-15 catalyst and in methanol medium. Polish Journal of Chemical Technology, 2016, 18, 9-14.	0.3	2
40	The isomerization of α-pinene over the Ti-SBA-15 catalyst—the influence of catalyst content and temperature. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 641-654.	0.8	14
41	The epoxidation of diallyl ether to allyl-glycidyl ether over the TS-1 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 719-731.	0.8	3
42	Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catalysis Today, 2016, 268, 111-120.	2.2	33
43	The studies on the limonene oxidation over the microporous TS-1 catalyst. Catalysis Today, 2016, 268, 121-129.	2.2	33
44	Preparation, properties and potential applications of a photocurable varnish with pleasant limonene smell. Polish Journal of Chemical Technology, 2016, 18, 13-19.	0.3	3
45	The utilization of the mesoporous Ti-SBA-15 catalyst in the epoxidation of allyl alcohol to glycidol and diglycidyl ether in the water medium. Polish Journal of Chemical Technology, 2015, 17, 23-31.	0.3	1
46	The oxidation of limonene at raised pressure and over the various titanium-silicate catalysts. Polish Journal of Chemical Technology, 2015, 17, 82-87.	0.3	8
47	Acetonitrile and water as solvents for the epoxidation of allylic compounds over the Ti-SBA-15 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 519-542.	0.8	3
48	The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules, 2014, 19, 19907-19922.	1.7	52
49	Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	9
50	Water as the solvent for the process of phenol hydroxylation over the Ti-MWW catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 491-505.	0.8	13
51	Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Polish Journal of Chemical Technology, 2013, 15, 111-115.	0.3	23
52	The Process of Phenol Hydroxylation in the Water Solution and over the Ti-MWW Catalyst. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	1
53	Clean Synthesis of 2-Methylglycidol over a Novel Titanosilica Catalyst - Ti-MWW under Autogenic Pressure. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	1
54	Optimization of a Ti-MWW Catalysed Phenol Hydroxylation Process. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	0

Agnieszka WrÃ³blewska

#	Article	IF	CITATIONS
55	The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 451-468.	0.8	24
56	Catalytic Epoxidation of Allyl Alcohol with Hydrogen Peroxide under Autogenic Pressure over Ti-MWW Catalyst. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	2
57	Hydroxylation of Phenol with Hydrogen Peroxide over the Ti-MWW Catalyst in the Presence of Acetonitrile. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	0
58	Selective liquid-phase oxidation of allyl alcohol to glycidol over MWW type titanosilicalite. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 451-462.	0.8	6
59	The Ti-MWW catalyst - its characteristic and catalytic properties in the epoxidation of allyl alcohol by hydrogen peroxide. Polish Journal of Chemical Technology, 2010, 12, 29-34.	0.3	8
60	Bis(3-methyl-1-propene) ether and 3-(3-methyl-1-propene)-3-methyl-1,2-epoxypropane ether synthesis during the epoxidation of 1-butene-3-ol with hydrogen peroxide over the TS-2 catalyst. Polish Journal of Chemical Technology, 2010, 12, 66-71.	0.3	0
61	Isolation of 1,2-epoxybutane-3-ol and 2,3-epoxybutane-1-ol from post-reaction mixtures. Polish Journal of Chemical Technology, 2010, 12, 29-32.	0.3	6
62	Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. Journal of Hazardous Materials, 2010, 179, 258-265.	6.5	42
63	Oxidation of Hexafluoropropylene with Oxygen to Hexafluoropropylene Oxide. Organic Process Research and Development, 2010, 14, 272-277.	1.3	7
64	Epoxidation of crotyl alcohol in the presence of titanium silicalite Ti-MWW catalyst — the new and friendly method of 2,3-epoxybutane-1-ol synthesis. Polish Journal of Chemical Technology, 2010, 12, 57-61.	0.3	1
65	Influence of technological parameters on the epoxidation of 1â€buteneâ€3â€ol over titanium silicalite TSâ€⊋ catalyst. Journal of Chemical Technology and Biotechnology, 2009, 84, 1344-1349.	1.6	3
66	Epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst under autogenic pressure. Journal of Hazardous Materials, 2009, 163, 1303-1309.	6.5	3
67	Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. Journal of Hazardous Materials, 2009, 170, 405-410.	6.5	25
68	Synthesis and characteristics of titanium silicalite TS-1, Ti-Beta and Ti-MWW catalysts. Polish Journal of Chemical Technology, 2009, 11, 64-71.	0.3	3
69	Influence of process parameters on the epoxidation of 2-buten-1-ol over titanium silicalite TS-1 catalyst. Chemical Papers, 2008, 62, .	1.0	3
70	Epoxidation of Allyl Alcohol to Glycidol over Titanium-Silicalite Ti-Beta and Ti-MCM-41 Catalysts. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	1
71	Oligomerization of hexafluoropropylene oxide in the presence of alkali metal halides. Polish Journal of Chemical Technology, 2007, 9, 95-97.	0.3	2
72	Research on the influence of parameters on hexafluoropropylene oxide oligomerization in the presence of complex amines. Polish Journal of Chemical Technology, 2007, 9, 98-100.	0.3	0

#	Article	IF	CITATIONS
73	Oxidation of hexafluoropropylene with molecular oxygen. Polish Journal of Chemical Technology, 2007, 9, 20-22.	0.3	4
74	The new method of 1,2-epoxy-3-butanol production over titanium silicalite catalysts. Polish Journal of Chemical Technology, 2007, 9, 49-52.	0.3	0
75	Epoxidation of 1-butene-3-ol with Hydrogen Peroxide under Autogenic and Atmospheric Pressure. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	2
76	Epoxidation of allyl alcohol with hydrogen peroxide over titanium silicalite TS-2 catalyst. Journal of Chemical Technology and Biotechnology, 2007, 82, 681-686.	1.6	5
77	Epoxidation of 2-buten-1-ol over Ti-MCM-41 and Ti-MCM-48 titanium silicalite catalysts. Polish Journal of Chemical Technology, 2007, 9, 1-4.	0.3	0
78	The pressure method of 1-butene-3-ol epoxidation over Ti-beta catalyst. Polish Journal of Chemical Technology, 2007, 9, 53-56.	0.3	1
79	Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 7365-7373.	1.8	15
80	Optimization of the Technological Parameters of Epoxidation of Methallyl Chloride by Hydrogen Peroxide over TS-1 Catalyst. Organic Process Research and Development, 2006, 10, 525-533.	1.3	2
81	Synthesis of technically useful perfluorocarboxylic acids. Journal of Fluorine Chemistry, 2006, 127, 345-350.	0.9	2
82	Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Applied Catalysis A: General, 2006, 309, 192-200.	2.2	15
83	Epoxidation of methallyl alcohol with hydrogen peroxide over TS-1 catalyst. Applied Catalysis A: General, 2005, 294, 244-250.	2.2	14
84	Desorption of chloroorganic compounds from a bed of activated carbon. Journal of Colloid and Interface Science, 2005, 285, 518-524.	5.0	17
85	Liquid phase epoxidation of allylic compounds with hydrogen peroxide over titanium silicalite catalysts. Journal of Molecular Catalysis A, 2005, 229, 207-210.	4.8	23
86	Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polymer Degradation and Stability, 2004, 83, 163-172.	2.7	38
87	Optimization of the technological parameters of epoxidation of allyl alcohol by hydrogen peroxide over Ti–BETA catalyst. Journal of Chemical Technology and Biotechnology, 2004, 79, 343-353.	1.6	3