Agnieszka Wróblewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043455/publications.pdf

Version: 2024-02-01

516561 610775 87 830 16 24 g-index citations h-index papers 87 87 87 648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules, 2014, 19, 19907-19922.	1.7	52
2	Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. Journal of Hazardous Materials, 2010, 179, 258-265.	6.5	42
3	Technological parameters of pyrolysis of waste polytetrafluoroethylene. Polymer Degradation and Stability, 2004, 83, 163-172.	2.7	38
4	Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catalysis Today, 2016, 268, 111-120.	2.2	33
5	The studies on the limonene oxidation over the microporous TS-1 catalyst. Catalysis Today, 2016, 268, 121-129.	2.2	33
6	Alpha-pinene isomerization over Ti-SBA-15 catalysts obtained by the direct method: The influence of titanium content, temperature, catalyst amount and reaction time. Microporous and Mesoporous Materials, 2018, 258, 72-82.	2,2	32
7	Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Applied Surface Science, 2017, 420, 873-881.	3.1	28
8	Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. Journal of Hazardous Materials, 2009, 170, 405-410.	6. 5	25
9	The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 451-468.	0.8	24
10	Influence of the Titanium Content in the Ti-MCM-41 Catalyst on the Course of the \hat{l}_{\pm} -Pinene Isomerization Process. Catalysts, 2019, 9, 396.	1.6	24
11	Liquid phase epoxidation of allylic compounds with hydrogen peroxide over titanium silicalite catalysts. Journal of Molecular Catalysis A, 2005, 229, 207-210.	4.8	23
12	Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Polish Journal of Chemical Technology, 2013, 15, 111-115.	0.3	23
13	Sulfuric acid modified clinoptilolite as a solid green catalyst for solvent-free α-pinene isomerization process. Microporous and Mesoporous Materials, 2021, 324, 111266.	2.2	22
14	The Isomerization of Limonene over the Ti-SBA-15 Catalystâ€"The Influence of Reaction Time, Temperature, and Catalyst Content. Catalysts, 2017, 7, 273.	1.6	18
15	Desorption of chloroorganic compounds from a bed of activated carbon. Journal of Colloid and Interface Science, 2005, 285, 518-524.	5.0	17
16	Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catalysis Letters, 2017, 147, 150-160.	1.4	16
17	Isomerization and Dehydroaromatization of $R(+)$ -Limonene Over the Ti-MCM-41 Catalyst: Effect of Temperature, Reaction Time and Catalyst Content on Product Yield. Catalysts, 2019, 9, 508.	1.6	16
18	Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 7365-7373.	1.8	15

#	Article	IF	Citations
19	Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Applied Catalysis A: General, 2006, 309, 192-200.	2.2	15
20	The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of \hat{l}_{\pm} -pinene. Microporous and Mesoporous Materials, 2020, 305, 110384.	2.2	15
21	Epoxidation of methallyl alcohol with hydrogen peroxide over TS-1 catalyst. Applied Catalysis A: General, 2005, 294, 244-250.	2.2	14
22	The isomerization of α-pinene over the Ti-SBA-15 catalystâ€"the influence of catalyst content and temperature. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 641-654.	0.8	14
23	Isomerization of limonene over natural zeolite-clinoptilolite. Clay Minerals, 2019, 54, 121-129.	0.2	14
24	Influence of Technological Parameters on the Isomerization of Geraniol Using Sepiolite. Catalysis Letters, 2020, 150, 901-911.	1.4	14
25	Water as the solvent for the process of phenol hydroxylation over the Ti-MWW catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 491-505.	0.8	13
26	High catalytic performance of 2D Ti3C2Tx MXene in \hat{l} ±-pinene isomerization to camphene. Applied Catalysis A: General, 2020, 604, 117765.	2.2	13
27	Limonene oxidation over Ti-MCM-41 and Ti-MWW catalysts with t-butyl hydroperoxide as the oxidant. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 523-543.	0.8	12
28	Carbonaceous catalysts from orange pulp for limonene oxidation. Carbon Letters, 2020, 30, 189-198.	3.3	11
29	Activated Carbon Modification towards Efficient Catalyst for High Value-Added Products Synthesis from Alpha-Pinene. Materials, 2021, 14, 7811.	1.3	10
30	Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	9
31	Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Processing and Synthesis, 2017, 6, .	1.3	9
32	The Ti-MWW catalyst - its characteristic and catalytic properties in the epoxidation of allyl alcohol by hydrogen peroxide. Polish Journal of Chemical Technology, 2010, 12, 29-34.	0.3	8
33	The oxidation of limonene at raised pressure and over the various titanium-silicate catalysts. Polish Journal of Chemical Technology, 2015, 17, 82-87.	0.3	8
34	Fragrant starch-based films with limonene. Current Chemistry Letters, 2017, , 41-48.	0.5	8
35	Clinoptilolite as a natural, active zeolite catalyst for the chemical transformations of geraniol. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 997-1011.	0.8	8
36	Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene. Polish Journal of Chemical Technology, 2017, 19, 50-58.	0.3	8

#	Article	IF	CITATIONS
37	Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks—Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. Materials, 2021, 14, 7448.	1.3	8
38	Oxidation of Hexafluoropropylene with Oxygen to Hexafluoropropylene Oxide. Organic Process Research and Development, 2010, 14, 272-277.	1.3	7
39	Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 843-858.	0.8	7
40	The Studies on α-Pinene Oxidation over the TS-1. The Influence of the Temperature, Reaction Time, Titanium and Catalyst Content. Materials, 2021, 14, 7799.	1.3	7
41	Isolation of 1,2-epoxybutane-3-ol and 2,3-epoxybutane-1-ol from post-reaction mixtures. Polish Journal of Chemical Technology, 2010, 12, 29-32.	0.3	6
42	Selective liquid-phase oxidation of allyl alcohol to glycidol over MWW type titanosilicalite. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 451-462.	0.8	6
43	Synthesis, characterization and application of the SBA-16 catalyst modified with titanium(IV) chloride in the eugenol isomerization. Microporous and Mesoporous Materials, 2021, 311, 110685.	2.2	6
44	Epoxidation of allyl alcohol with hydrogen peroxide over titanium silicalite TS-2 catalyst. Journal of Chemical Technology and Biotechnology, 2007, 82, 681-686.	1.6	5
45	Synthesis, Characterization, and Catalytic Applications of the Ti-SBA-16 Porous Material in the Selective and Green Isomerizations of Limonene and S-Carvone. Catalysts, 2020, 10, 1452.	1.6	5
46	Epoxidation of 1,5,9-cyclododecatriene with hydrogen peroxide under phase-transfer catalysis conditions: influence of selected parameters on the course of epoxidation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 983-1001.	0.8	5
47	Oxidation of hexafluoropropylene with molecular oxygen. Polish Journal of Chemical Technology, 2007, 9, 20-22.	0.3	4
48	Polysaccharide films modified by compounds of natural origin and silver having potential medical applications. Cellulose, 2021, 28, 7257-7271.	2.4	4
49	Environmental friendly method of the epoxidation of limonene with hydrogen peroxide over the Ti-SBA-15 catalyst. Polish Journal of Chemical Technology, 2018, 20, 6-12.	0.3	4
50	Effect of extraction method on the antioxidative activity of ground elder (<i>Aegopodium podagraria) Tj ETQq0 (</i>)	Overlock 10 Tf
51	UV Curable Coatings Based on Urethane Acrylates Containing Eugenol and Evaluation of Their Antimicrobial Activity. Coatings, 2021, 11, 1556.	1.2	4
52	Optimization of the technological parameters of epoxidation of allyl alcohol by hydrogen peroxide over Ti–BETA catalyst. Journal of Chemical Technology and Biotechnology, 2004, 79, 343-353.	1.6	3
53	Influence of process parameters on the epoxidation of 2-buten-1-ol over titanium silicalite TS-1 catalyst. Chemical Papers, 2008, 62, .	1.0	3
54	Influence of technological parameters on the epoxidation of 1â€buteneâ€3â€ol over titanium silicalite TSâ€2 catalyst. Journal of Chemical Technology and Biotechnology, 2009, 84, 1344-1349.	1.6	3

#	Article	IF	CITATIONS
55	Epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst under autogenic pressure. Journal of Hazardous Materials, 2009, 163, 1303-1309.	6.5	3
56	Synthesis and characteristics of titanium silicalite TS-1, Ti-Beta and Ti-MWW catalysts. Polish Journal of Chemical Technology, 2009, 11, 64-71.	0.3	3
57	Acetonitrile and water as solvents for the epoxidation of allylic compounds over the Ti-SBA-15 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 519-542.	0.8	3
58	The epoxidation of diallyl ether to allyl-glycidyl ether over the TS-1 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 719-731.	0.8	3
59	Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst. Current Chemistry Letters, 2017, , 7-14.	0.5	3
60	Preparation, properties and potential applications of a photocurable varnish with pleasant limonene smell. Polish Journal of Chemical Technology, 2016, 18, 13-19.	0.3	3
61	Epoxidation of 1,5,9-Cyclododecatriene with Hydrogen Peroxide over Ti-MCM-41 Catalyst. Catalysts, 2021, 11, 1402.	1.6	3
62	Conversion of Geraniol into Useful Value-Added Products in the Presence of Catalysts of Natural Origin: Diatomite and Alum. Materials, 2022, 15, 2449.	1.3	3
63	FeCl3-Modified Carbonaceous Catalysts from Orange Peel for Solvent-Free Alpha-Pinene Oxidation. Materials, 2021, 14, 7729.	1.3	3
64	Optimization of the Technological Parameters of Epoxidation of Methallyl Chloride by Hydrogen Peroxide over TS-1 Catalyst. Organic Process Research and Development, 2006, 10, 525-533.	1.3	2
65	Synthesis of technically useful perfluorocarboxylic acids. Journal of Fluorine Chemistry, 2006, 127, 345-350.	0.9	2
66	Oligomerization of hexafluoropropylene oxide in the presence of alkali metal halides. Polish Journal of Chemical Technology, 2007, 9, 95-97.	0.3	2
67	Epoxidation of 1-butene-3-ol with Hydrogen Peroxide under Autogenic and Atmospheric Pressure. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	2
68	Catalytic Epoxidation of Allyl Alcohol with Hydrogen Peroxide under Autogenic Pressure over Ti-MWW Catalyst. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	2
69	Epoxidation of allyl-glycidyl ether with hydrogen peroxide over Ti-SBA-15 catalyst and in methanol medium. Polish Journal of Chemical Technology, 2016, 18, 9-14.	0.3	2
70	Fragrant films on the basis of potato starch. Polish Journal of Chemical Technology, 2017, 19, 88-92.	0.3	2
71	The isomerization of S-carvone over the natural clinoptilolite as the catalyst: the influence of reaction time, temperature and catalyst content. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 273-288.	0.8	2
72	Healing properties of geraniol – a review of the literature. Pomeranian Journal of Life Sciences, 2019, 65, 24-28.	0.1	2

#	Article	IF	Citations
73	Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst. Polish Journal of Chemical Technology, 2018, 20, 1-6.	0.3	2
74	Epoxidation of Allyl Alcohol to Glycidol over Titanium-Silicalite Ti-Beta and Ti-MCM-41 Catalysts. Journal of Advanced Oxidation Technologies, 2008, 11 , .	0.5	1
75	The Process of Phenol Hydroxylation in the Water Solution and over the Ti-MWW Catalyst. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	1
76	Clean Synthesis of 2-Methylglycidol over a Novel Titanosilica Catalyst - Ti-MWW under Autogenic Pressure. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	1
77	The utilization of the mesoporous Ti-SBA-15 catalyst in the epoxidation of allyl alcohol to glycidol and diglycidyl ether in the water medium. Polish Journal of Chemical Technology, 2015, 17, 23-31.	0.3	1
78	Studies on Obtaining Diglycidyl Ether from Allyl-Glycidyl Ether over the Mesoporous Ti-SBA-15 Catalyst. , $2016, , .$		1
79	The pressure method of 1-butene-3-ol epoxidation over Ti-beta catalyst. Polish Journal of Chemical Technology, 2007, 9, 53-56.	0.3	1
80	Epoxidation of crotyl alcohol in the presence of titanium silicalite Ti-MWW catalyst â€" the new and friendly method of 2,3-epoxybutane-1-ol synthesis. Polish Journal of Chemical Technology, 2010, 12, 57-61.	0.3	1
81	Microbiological Tests of Natural Limonene and the Compounds Obtained after Isomerization of Limonene in the Presence of Ti-SBA-15 Catalyst-α-Terpinene, γ-Terpinene, Terpinolene, and p-Cymene. Journal of Cosmetic Science, 2019, 70, 137-147.	0.1	1
82	Research on the influence of parameters on hexafluoropropylene oxide oligomerization in the presence of complex amines. Polish Journal of Chemical Technology, 2007, 9, 98-100.	0.3	0
83	The new method of 1,2-epoxy-3-butanol production over titanium silicalite catalysts. Polish Journal of Chemical Technology, 2007, 9, 49-52.	0.3	0
84	Bis(3-methyl-1-propene) ether and 3-(3-methyl-1-propene)-3-methyl-1,2-epoxypropane ether synthesis during the epoxidation of 1-butene-3-ol with hydrogen peroxide over the TS-2 catalyst. Polish Journal of Chemical Technology, 2010, 12, 66-71.	0.3	0
85	Hydroxylation of Phenol with Hydrogen Peroxide over the Ti-MWW Catalyst in the Presence of Acetonitrile. Journal of Advanced Oxidation Technologies, $2011, 14, \ldots$	0.5	0
86	Optimization of a Ti-MWW Catalysed Phenol Hydroxylation Process. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	0
87	Epoxidation of 2-buten-1-ol over Ti-MCM-41 and Ti-MCM-48 titanium silicalite catalysts. Polish Journal of Chemical Technology, 2007, 9, 1-4.	0.3	0