
Dagnija Blumberga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7042903/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	<i>Ex Post</i> Evaluation of Large Electricity Consumer Policy Measures. Environmental and Climate Technologies, 2022, 26, 12-24.	1.4	2
2	Education for Advancing the Implementation of the Green Deal Goals for Bioeconomy. Environmental and Climate Technologies, 2022, 26, 75-83.	1.4	4
3	Deliberation Platform for Energy Transition Policies: How to Make Complex Things Simple. Energies, 2022, 15, 90.	3.1	4
4	Agro Biopolymer: A Sustainable Future of Agriculture – State of Art Review. Environmental and Climate Technologies, 2022, 26, 499-511.	1.4	6
5	Small scale pellet boiler gas treatment in fog unit. International Journal of Energy and Environmental Engineering, 2021, 12, 191-202.	2.5	1
6	Bioeconomy triple factor nexus through indicator analysis. New Biotechnology, 2021, 61, 57-68.	4.4	8
7	Importance of Energy Efficiency in Manufacturing Industries for Climate and Competitiveness. Environmental and Climate Technologies, 2021, 25, 306-317.	1.4	5
8	Industrial Energy Efficiency Towards Green Deal Transition. Case of Latvia Environmental and Climate Technologies, 2021, 25, 42-57.	1.4	9
9	Analysis of CO2 Valorisation Options for Regional Development. Environmental and Climate Technologies, 2021, 25, 243-253.	1.4	2
10	Diffusion Dynamics of Energy Service Companies in the Residential Sector. International Journal of Energy, 2021, 15, 8-15.	0.1	1
11	The Contradictions between District and Individual Heating towards Green Deal Targets. Sustainability, 2021, 13, 3370.	3.2	7
12	Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study. Energies, 2021, 14, 4171.	3.1	5
13	Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 2021, 3, 100023.	5.7	10
14	Bioresource utilization index $\hat{a} \in A$ way to quantify and compare resource efficiency in production. Journal of Cleaner Production, 2021, 320, 128791.	9.3	8
15	Linking energy efficiency policies toward 4th generation district heating system. Energy, 2021, 234, 121245.	8.8	17
16	Long-Term Policy Recommendations for Improving the Efficiency of Heating and Cooling. Environmental and Climate Technologies, 2021, 25, 382-391.	1.4	7
17	Criteria for Choosing Thermal Packaging for Temperature Sensitive Goods Transportation. Environmental and Climate Technologies, 2021, 25, 382-391.	1.4	2
18	What Will Be the Future of Biogas Sector?. Environmental and Climate Technologies, 2021, 25, 295-305.	1.4	6

#	Article	IF	CITATIONS
19	Innovative scrubber technology model for domestic boiler application. International Journal of Energy and Environmental Engineering, 2021, 12, 11-21.	2.5	2
20	Estimating energy efficiency increase in national district heating network. Energy Reports, 2021, 7, 401-409.	5.1	4
21	Does district heating tariff motivate energy efficiency improvement?. Energy Reports, 2021, 7, 410-418.	5.1	2
22	Valorization Methodology for Agriculture Sector Climate Change Mitigation Measures. Environmental and Climate Technologies, 2021, 25, 944-954.	1.4	3
23	Will Aggregator Reduce Renewable Power Surpluses? A System Dynamics Approach for the Latvia Case Study. Energies, 2021, 14, 7900.	3.1	6
24	Unintended Effects of Energy Efficiency Policy: Lessons Learned in the Residential Sector. Energies, 2021, 14, 7792.	3.1	9
25	Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies, 2021, 14, 8006.	3.1	10
26	Production of Renewable Insulation Material – New Business Model of Bioeconomy for Clean Energy Transition. Environmental and Climate Technologies, 2021, 25, 1061-1074.	1.4	4
27	Biodiplomacy Attractiveness in Bioeconomy Education. Case Study. Environmental and Climate Technologies, 2021, 25, 1205-1214.	1.4	Ο
28	Modelling of Institutional Capacity within Study of Energy Transition Dynamics. Environmental and Climate Technologies, 2021, 25, 1193-1204.	1.4	0
29	Role of Green Jobs in the Reduction of Waste and Waste Management. Environmental and Climate Technologies, 2021, 25, 1128-1141.	1.4	4
30	Complete Circularity in Cross-Laminated Timber Production. Environmental and Climate Technologies, 2021, 25, 1101-1113.	1.4	5
31	Analysis of Bioeconomy Affecting Factors – Climate Change and Production. Environmental and Climate Technologies, 2021, 25, 1293-1304.	1.4	2
32	Spatial Analysis of Renewable Energy Sources. Environmental and Climate Technologies, 2021, 25, 865-878.	1.4	3
33	Is It Possible to Obtain More Energy from Solar DH Field? Interpretation of Solar DH System Data. Environmental and Climate Technologies, 2021, 25, 1284-1292.	1.4	6
34	Bioresource Value Model. Case of Fisheries. Environmental and Climate Technologies, 2021, 25, 1179-1192.	1.4	3
35	Mapping of New Business Models in Domains of Technologies and Energy for Modelling of Dynamics of Clean Energy Transition. Environmental and Climate Technologies, 2021, 25, 1152-1164.	1.4	0
36	Sustainability Assessment of Wind Energy in Latvia: Sustainability SWOT and Multi-Criteria Analysis. Environmental and Climate Technologies, 2021, 25, 1253-1269.	1.4	1

#	Article	IF	CITATIONS
37	Systematization of Material Flows of Natural and Secondary Raw Materials of Phosphorus Industry of the Republic of Kazakhstan. Environmental and Climate Technologies, 2021, 25, 894-906.	1.4	Ο
38	To Be, or Not to Be – the Question of Forestry Resources in Bio-Diplomacy. Environmental and Climate Technologies, 2021, 25, 1337-1346.	1.4	1
39	Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies, 2021, 25, 1229-1240.	1.4	2
40	Potential role of energy communities in the way towards climate neutrality Case study of Latvia. , 2021, , .		0
41	Regional Development Scenarios and Model Boundaries for CCU in Energy Sector in Latvia. , 2021, , .		1
42	Transition from traditional historic urban block to positive energy block. Energy, 2020, 202, 117485.	8.8	21
43	Does the Balance Exist between Cost Efficiency of Different Energy Efficiency Measures? DH Systems Case. Energies, 2020, 13, 5151.	3.1	9
44	Benchmarking of Industrial Energy Efficiency. Outcomes of an Energy Audit Policy Program. Energies, 2020, 13, 2210.	3.1	18
45	Solar power or solar heat: What will upraise the efficiency of district heating? Multi-criteria analyses approach. Energy, 2020, 198, 117291.	8.8	12
46	Mathematical Modeling of Heat and Mass Processes in a Scrubber: The Box–Wilson Optimization Method. Energies, 2020, 13, 2170.	3.1	2
47	Analysis of the results of national energy audit program in Latvia. Energy, 2020, 202, 117679.	8.8	21
48	Aggregator as a new electricity market player: (Case study of Latvia). , 2020, , .		2
49	Ranking of Bioresources for Biogas Production. Environmental and Climate Technologies, 2020, 24, 368-377.	1.4	11
50	Climate Index for District Heating System. Environmental and Climate Technologies, 2020, 24, 406-418.	1.4	8
51	Towards Industrial Energy Efficiency Index. Environmental and Climate Technologies, 2020, 24, 419-430.	1.4	6
52	GHG Performance Evaluation in Green Deal Context. Environmental and Climate Technologies, 2020, 24, 431-441.	1.4	9
53	Multi-Criteria Decision Analysis Methods Comparison. Environmental and Climate Technologies, 2020, 24, 454-471.	1.4	53
54	Bioeconomy Investments: Market Considerations. Environmental and Climate Technologies, 2020, 24, 79-91.	1.4	5

#	Article	IF	CITATIONS
55	Treatment of Particulate Matter Pollution: People's Attitude and Readiness to Act. Environmental and Climate Technologies, 2020, 24, 231-246.	1.4	4
56	Are Industries Open for Renewable Energy?. Environmental and Climate Technologies, 2020, 24, 447-456.	1.4	5
57	Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast <i>Yarrowia lipolytica</i> . Environmental and Climate Technologies, 2020, 24, 457-469.	1.4	9
58	Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment. Environmental and Climate Technologies, 2020, 24, 483-492.	1.4	4
59	Carbon Emissions in Recreation Fishing Travelling. Case of Latvia. Environmental and Climate Technologies, 2020, 24, 493-512.	1.4	3
60	Blind Spots of Energy Transition Policy – Case Study of Latvia. Environmental and Climate Technologies, 2020, 24, 325-336.	1.4	3
61	Alternative "Green―Antimicrobial Agents Obtained by Selective Sorption from Lactobacillus plantarum Culture. Environmental and Climate Technologies, 2020, 24, 740-754.	1.4	1
62	Difference between Bibliometric and Grey Data. Transdisciplinary Bioeconomy Research. Environmental and Climate Technologies, 2020, 24, 103-114.	1.4	1
63	Assessment of Energy Sustainability in Statistical Regions of Latvia using Energy Sustainability Index. Environmental and Climate Technologies, 2020, 24, 160-169.	1.4	5
64	Comprehensive Literature Review on Valuable Compounds and Extraction Technologies: The Eastern Baltic Sea Seaweeds. Environmental and Climate Technologies, 2020, 24, 178-195.	1.4	2
65	System Dynamics Modelling of Railway Electrification in Latvia. Environmental and Climate Technologies, 2020, 24, 247-257.	1.4	5
66	Ranking of By-products for Single Cell Oil Production. Case of Latvia. Environmental and Climate Technologies, 2020, 24, 258-271.	1.4	2
67	Multi-Criteria Evaluation of Efficiency in Fish Processing. Environmental and Climate Technologies, 2020, 24, 300-308.	1.4	О
68	Fish Processing Efficiency Ranking. Environmental and Climate Technologies, 2020, 24, 135-144.	1.4	1
69	The Green Deal Umbrella for Environmental and Climate Technologies. Environmental and Climate Technologies, 2020, 24, I-II.	1.4	1
70	Circular Economy Analysis. Ranking of Energy Resources from Waste. , 2020, , .		0
71	Cooling load as a blind spot for energy system development. , 2020, , .		0
72	Trilemma of historic buildings: Smart district heating systems, bioeconomy and energy efficiency. Energy, 2019, 186, 115741.	8.8	8

Dagnija Blumberga

#	Article	IF	CITATIONS
73	Solar power in district heating. P2H flexibility concept. Energy, 2019, 181, 1023-1035.	8.8	23
74	Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region. Energies, 2019, 12, 3337.	3.1	23
75	Experimental and analytical study of the flue gas condenser – fog unit. Energy Procedia, 2019, 158, 822-827.	1.8	8
76	Cleaner production nodes in fish processing. Case study in Latvia. Energy Procedia, 2019, 158, 3951-3956.	1.8	1
77	Energy taxation exemptions for energy intensive industries and its impact on energy efficiency in Latvia. , 2019, , .		1
78	Mapping of Distributed Power Generation Versus Biomass Availability. , 2019, , .		2
79	Energy Intensive Manufacturers in State Economy: Case study of Latvia. , 2019, , .		1
80	Energy saving measures for a district heating company. Case study of Latvia. , 2019, , .		0
81	Energy Efficiency Barriers in Latvian Industry. , 2019, , .		0
82	Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 2019, 101, 440-452.	16.4	82
83	Particulate Matter Emission Decrease Possibility from Household Sector using Flue Gas Condenser – Fog Unit. Analysis and Interpretation of Results. Environmental and Climate Technologies, 2019, 23, 135-151.	1.4	4
84	Multicriteria Analysis of Glass Waste Application. Environmental and Climate Technologies, 2019, 23, 152-167.	1.4	16
85	Evaluation of Polymer Matrix Composite Waste Recycling Methods. Environmental and Climate Technologies, 2019, 23, 168-187.	1.4	25
86	Mandatory Procurement Lessons. Phenomena of External Initiator Factor. Environmental and Climate Technologies, 2019, 23, 188-213.	1.4	2
87	Priorities Determination of Using Bioresources. Case Study of Heracleum sosnowskyi. Environmental and Climate Technologies, 2019, 23, 242-256.	1.4	5
88	Obtaining the Factors Affecting Bioeconomy. Environmental and Climate Technologies, 2019, 23, 277-291.	1.4	6
89	Energy Efficiency Obligations and Subsidies to Energy Intensive Industries in Latvia. Environmental and Climate Technologies, 2019, 23, 90-101.	1.4	5
90	Towards Efficient Waste Management in Latvia: An Empirical Assessment of Waste Composition. Environmental and Climate Technologies, 2019, 23, 114-130.	1.4	11

#	Article	IF	CITATIONS
91	Methods to Evaluate Electricity Policy from Climate Perspective. Environmental and Climate Technologies, 2019, 23, 131-147.	1.4	9
92	New Vision on Invasive Alien Plant Management System. Environmental and Climate Technologies, 2019, 23, 166-186.	1.4	1
93	Key Factors for Successful Implementation of Energy Efficiency Policy Instruments: A Theoretical Study and the Case of Latvia. Environmental and Climate Technologies, 2019, 23, 187-206.	1.4	12
94	Evaluation of the Environmental Engineering Study Programme at University. Environmental and Climate Technologies, 2019, 23, 310-324.	1.4	6
95	Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies, 2019, 23, 325-337.	1.4	15
96	Why Biopolymer Packaging Materials are Better. Environmental and Climate Technologies, 2019, 23, 366-384.	1.4	10
97	Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environmental and Climate Technologies, 2019, 23, 129-146.	1.4	16
98	Sustainability Analysis of Manufacturing Industry. Environmental and Climate Technologies, 2019, 23, 159-169.	1.4	4
99	Analysis of Energy Supply Solutions of Dwelling Buildings. Environmental and Climate Technologies, 2019, 23, 182-189.	1.4	2
100	Paper Waste Recycling. Circular Economy Aspects. Environmental and Climate Technologies, 2019, 23, 260-273.	1.4	26
101	Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach. Environmental and Climate Technologies, 2019, 23, 319-332.	1.4	7
102	Sprayed Water Flowrate, Temperature and Drop Size Effects on Small Capacity Flue Gas Condenser's Performance. Environmental and Climate Technologies, 2019, 23, 333-346.	1.4	6
103	When Bioeconomy Development Becomes a Biomass Energy Competitor. Environmental and Climate Technologies, 2019, 23, 347-359.	1.4	8
104	The Evaluation of Factors Affecting Bioeconomy Development Using Transdisciplinary Approach. Environmental and Climate Technologies, 2019, 23, 360-369.	1.4	4
105	Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies, 2019, 23, 370-392.	1.4	15
106	Analysis of Operation Parameters of Fish Refrigeration by Exergy Analysis. Case Study. Environmental and Climate Technologies, 2019, 23, 229-241.	1.4	2
107	Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies, 2019, 23, 47-63.	1.4	9
108	Estimation of Carbon Emission Reduction from Upgrading the DH Network to the 4 th Generation. Multivariate Linear Regression Model. Environmental and Climate Technologies, 2019, 23, 64-73.	1.4	5

#	Article	IF	CITATIONS
109	Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies, 2019, 23, 101-109.	1.4	8
110	Empirical Model of Cost Reduction in Local DH Systems. Low Temperature Approach. Environmental and Climate Technologies, 2019, 23, 190-201.	1.4	2
111	Integration of Sun PV Electricity in Centralized Heating Systems. Environmental and Climate Technologies, 2019, 23, 245-259.	1.4	0
112	Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies, 2019, 23, 147-158.	1.4	6
113	Parameters that Affect Electricity Consumption in Fish Freezing. Case Study. Environmental and Climate Technologies, 2019, 23, 15-25.	1.4	2
114	Pathway and restriction in district heating systems development towards 4th generation district heating. Energy, 2018, 152, 108-118.	8.8	33
115	Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy, 2018, 154, 424-432.	8.8	32
116	Methodology for determining potential of forest bioproduct commercialization. Environmental Development, 2018, 26, 76-85.	4.1	3
117	Policy incentives for flexible district heating in the Baltic countries. Utilities Policy, 2018, 51, 61-72.	4.0	28
118	System dynamics model of a biotechonomy. Journal of Cleaner Production, 2018, 172, 4018-4032.	9.3	22
119	Impact of economical mechanisms on CO2 emissions from non-ETS district heating in Latvia using system dynamic approach. International Journal of Energy and Environmental Engineering, 2018, 9, 111-121.	2.5	4
120	Solar energy integration in future urban plans of the South and Nordic cities. Energy Procedia, 2018, 152, 1127-1132.	1.8	7
121	Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia, 2018, 147, 518-524.	1.8	11
122	In search for market-based energy efficiency investment in households: smart home solutions as an optimized use of energy and reduction of costs for energy. Energy Procedia, 2018, 147, 1-6.	1.8	4
123	Methodology of system dynamic approach for solar energy integration in district heating. Energy Procedia, 2018, 147, 130-136.	1.8	6
124	Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia, 2018, 147, 452-457.	1.8	9
125	First solar power plant in Latvia. Analysis of operational data. Energy Procedia, 2018, 147, 162-165.	1.8	13
126	Towards understanding the transdisciplinary approach of the bioeconomy nexus. Energy Procedia, 2018, 147, 175-180.	1.8	11

#	Article	IF	CITATIONS
127	Laboratory research of the flue gas condenser – fog unit. Energy Procedia, 2018, 147, 482-487.	1.8	6
128	Energy efficiency in large industrial plants. Legislative aspects. Energy Procedia, 2018, 147, 202-206.	1.8	16
129	Modelling energy production flexibility: system dynamics approach. Energy Procedia, 2018, 147, 503-509.	1.8	21
130	Concept for the innovative environmentally friendly stack. Energy Procedia, 2018, 147, 531-536.	1.8	0
131	Biomass and natural gas co-firing – evaluation of GHG emissions. Energy Procedia, 2018, 147, 558-565.	1.8	15
132	Photovoltaic effect in bulk heterojunction system with glass forming indandione derivative DMABI-6Ph. Energy Procedia, 2018, 147, 573-580.	1.8	0
133	Qualitative indicator analysis of a sustainable remediation. Energy Procedia, 2018, 147, 588-593.	1.8	5
134	Methodology of municipal energy plans. Priorities for sustainability. Energy Procedia, 2018, 147, 594-599.	1.8	8
135	Accelerating power generation with solar panels. Case in Latvia. Energy Procedia, 2018, 147, 600-606.	1.8	11
136	The benchmarking of chicory coffee's production. Energy Procedia, 2018, 147, 631-635.	1.8	4
137	Indicator analysis of integrated municipal waste management system. Case study of Latvia. Energy Procedia, 2018, 147, 227-234.	1.8	2
138	Analysis of regulatory instruments promoting building energy efficiency. Energy Procedia, 2018, 147, 258-267.	1.8	18
139	Comparison of biomethane potential lab tests for Latvian locally available algae. Energy Procedia, 2018, 147, 277-281.	1.8	4
140	Analytical framework for commercialization of the innovation: case of thermal packaging material. Energy Procedia, 2018, 147, 374-381.	1.8	7
141	Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia, 2018, 147, 390-396.	1.8	32
142	Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia, 2018, 147, 409-418.	1.8	58
143	Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia, 2018, 149, 549-554.	1.8	9
144	Choosing the best nature's strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia, 2018, 152, 450-455.	1.8	3

#	Article	IF	CITATIONS
145	Analysis of fish refrigeration electricity consumption. Energy Procedia, 2018, 147, 649-653.	1.8	5
146	Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies, 2018, 22, 149-164.	1.4	22
147	Solar facade module for nearly zero energy building. Energy, 2018, 157, 1025-1034.	8.8	58
148	A review of demand side flexibility potential in Northern Europe. Renewable and Sustainable Energy Reviews, 2018, 91, 654-664.	16.4	95
149	Solar energy use in district heating systems. A case study in Latvia. Energy, 2017, 137, 586-594.	8.8	44
150	Combining energy efficiency at source and at consumer to reach 4th generation district heating: Economic and system dynamics analysis. Energy, 2017, 137, 595-606.	8.8	49
151	Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies. Energy, 2017, 137, 834-845.	8.8	13
152	Use of Macroalgae for Bioenergy Production in Latvia: Review on Potential Availability of Marine Coastline Species. Energy Procedia, 2017, 113, 403-410.	1.8	13
153	Common and Distinctive in Municipal Solid Waste Management in Baltic States. Energy Procedia, 2017, 113, 319-326.	1.8	9
154	Design of Experimental Investigation about the Effects of Flow Rate and PCM Placement on Thermal Accumulation. Energy Procedia, 2017, 113, 58-62.	1.8	3
155	Innovative Bioproducts from Forest Biomass. Method of Analysis. Energy Procedia, 2017, 113, 434-441.	1.8	10
156	Optimization Methodology for Complete Use of Bio-resources. Energy Procedia, 2017, 113, 28-34.	1.8	13
157	Process Optimization for Pellets Production. Energy Procedia, 2017, 113, 396-402.	1.8	2
158	Seaweed Cultivation Laboratory Testing: Effects of Nutrients on Growth Rate of Ulva intestinalis. Energy Procedia, 2017, 113, 454-459.	1.8	9
159	Comparative Analyses of Processed Wood Waste Reuse Possibilities after Chemical Delignification Treatment. Energy Procedia, 2017, 113, 289-296.	1.8	6
160	Case Study of Lead Pollution in the Roads of Almaty. Energy Procedia, 2017, 113, 369-376.	1.8	6
161	Biomass Gasification for District Heating. Energy Procedia, 2017, 113, 217-223.	1.8	17
162	Invasive Species Application in Bioeconomy. Case Study Heracleum sosnowskyi Manden in Latvia. Energy Procedia, 2017, 113, 238-243.	1.8	11

#	Article	IF	CITATIONS
163	Comparative Life Cycle Assessment of Woodchip Uses in Pyrolysis and Combined Heat and Power Production in Latvia. Energy Procedia, 2017, 113, 201-208.	1.8	8
164	Evaluation of agriculture eco-efficiency in Latvia. Energy Procedia, 2017, 128, 309-315.	1.8	25
165	Experimental investigation of downdraft gasifier at various conditions. Energy Procedia, 2017, 128, 332-338.	1.8	38
166	Methodology for estimation of carbon dioxide storage in bioproducts. Energy Procedia, 2017, 128, 533-538.	1.8	4
167	Demand response analysis methodology in district heating system. Energy Procedia, 2017, 128, 539-543.	1.8	17
168	Energy policy for energy intensive manufacturing companies and its impact on energy efficiency improvements. System dynamics approach. Energy Procedia, 2017, 128, 10-16.	1.8	15
169	Energy and exergy balance methodology. Wood chip dryer. Energy Procedia, 2017, 128, 551-557.	1.8	12
170	Carbon storage in wood products. Energy Procedia, 2017, 128, 558-563.	1.8	23
171	Economic analysis of wood products: system dynamics approach. Energy Procedia, 2017, 128, 431-436.	1.8	13
172	Heat transfer analysis by use of lense integrated in building wall. Energy Procedia, 2017, 128, 453-460.	1.8	2
173	Life cycle assessment of paper production from treated wood. Energy Procedia, 2017, 128, 461-468.	1.8	20
174	Extraction of fish oil using green extraction methods: a short review. Energy Procedia, 2017, 128, 477-483.	1.8	106
175	Opportunities for bioenergy in the Baltic Sea Region. Energy Procedia, 2017, 128, 157-164.	1.8	16
176	Levelized cost of energy analysis of co-firing solid, liquid and gaseous fuel. Energy Procedia, 2017, 128, 202-207.	1.8	3
177	Fog unit versus electrical precipitator and filter. Energy Procedia, 2017, 128, 400-405.	1.8	3
178	Novel tools to study socio-technical transitions in energy systems. Energy Procedia, 2017, 128, 418-422.	1.8	5
179	Optimisation of resources flows in pellet manufacture. Energy Procedia, 2017, 128, 358-362.	1.8	2
180	Bioeconomy mapping indicators and methodology. Case study about forest sector in Latvia. Energy Procedia, 2017, 128, 363-367.	1.8	5

#	Article	IF	CITATIONS
181	Eco-design analysis for innovative bio-product from forest biomass assessment. Energy Procedia, 2017, 128, 368-372.	1.8	3
182	Experimental study of droplet biofilter packed with green sphagnum to clean air from volatile organic compounds. Energy Procedia, 2017, 128, 373-378.	1.8	3
183	Flue gas treatment multi-criteria analysis. Energy Procedia, 2017, 128, 379-385.	1.8	5
184	Prioritization methodology for the determination of national targets. Energy Procedia, 2017, 128, 215-221.	1.8	7
185	DH company in prosumers role. Energy Procedia, 2017, 128, 234-239.	1.8	6
186	Use of round goby (Neogobius melanostomus) processing waste in bioeconomy. Energy Procedia, 2017, 128, 484-490.	1.8	2
187	Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia, 2017, 128, 504-511.	1.8	104
188	Analysis of wood bark use opportunities. Energy Procedia, 2017, 128, 268-274.	1.8	24
189	Optimal strategies for municipal solid waste treatment – environmental and socio-economic criteria assessment. Energy Procedia, 2017, 128, 512-519.	1.8	15
190	Comparison of theoretical and practical energy efficiency values in indirect contact gas condensing unit. Energy Procedia, 2017, 128, 520-524.	1.8	0
191	Insight into bioeconomy. Solidago canadensis as a valid resource. Brief review. Energy Procedia, 2017, 128, 275-280.	1.8	12
192	Wood resources for energy sector in Latvia. Is it a sustainable solution?. Energy Procedia, 2017, 128, 287-291.	1.8	7
193	Sectoral Greenhouse Gas Emission Mitigation Possibilities. Why Broad Spectrum of Indicators is Applied. Energy Procedia, 2017, 113, 377-381.	1.8	2
194	Heat Demand and Energy Resources Balance Change in Latvia. Energy Procedia, 2017, 113, 411-416.	1.8	7
195	Why Bioeconomy is Actual for Latvia. Research Achievements in Institute of Energy Systems and Environment. Energy Procedia, 2017, 113, 460-465.	1.8	10
196	Sustainable National Policy Planning with Conflicting Goals. Energy Procedia, 2017, 113, 259-264.	1.8	6
197	Exergy Analysis for District Heating Network. Energy Procedia, 2017, 113, 189-193.	1.8	12
198	Bioeconomy Growth in Latvia. System-dynamics Model for High-value Added Products in Fisheries. Energy Procedia, 2017, 113, 339-345.	1.8	15

#	Article	IF	CITATIONS
199	Why Solar Electricity has High Potential for Kazakhstan Industries. Energy Procedia, 2017, 113, 417-422.	1.8	5
200	Biotechonomy Innovations Development Barriers in Latvia. Energy Procedia, 2017, 113, 285-288.	1.8	7
201	Pre-assessment Method for Historic Building Stock Renovation Evaluation. Energy Procedia, 2017, 113, 346-353.	1.8	9
202	Multi-perspective Methodology to Assess the Transition to 4th Generation District Heating Systems. Energy Procedia, 2017, 113, 17-21.	1.8	8
203	Biomass Co-firing Laboratory Equipment. Energy Procedia, 2017, 113, 390-395.	1.8	8
204	Towards Carbon Neutral Combustion. LCOE Analysis of Co-firing Solid Particles and Gaseous Fuel in Latvia. Energy Procedia, 2017, 113, 428-433.	1.8	3
205	Analysis of Industrial Electricity Consumption Flexibility. Assessment of Saving Potential in Latvia and Kazakhstan. Energy Procedia, 2017, 113, 450-453.	1.8	6
206	Urban Planning Needs. Clustering of Energy End Users. Energy Procedia, 2017, 113, 297-303.	1.8	0
207	Market Opportunities for Cellulose Products From Combined Renewable Resources. Environmental and Climate Technologies, 2017, 19, 33-38.	1.4	22
208	Energy Efficiency Indicators in Peat Extraction Industry – A Case Study. Energy Procedia, 2017, 113, 143-150.	1.8	6
209	Latvian Energy Policy on Energy Intensive Industries. Energy Procedia, 2017, 113, 362-368.	1.8	11
210	Effects of pre-treatment on Biochemical Methane Potential (BMP) testing using Baltic Sea Fucus vesiculosus feedstock. Biomass and Bioenergy, 2017, 105, 23-31.	5.7	26
211	Chemical and Microbiological Nature of Produced Water Treatment Biotechnology. Energy Procedia, 2017, 113, 116-120.	1.8	2
212	Economic sustainability of pellet production in Latvia. Energy Procedia, 2017, 142, 531-537.	1.8	6
213	Bioproducts from Potatoes. A Review. Environmental and Climate Technologies, 2017, 21, 18-27.	1.4	24
214	Analysis of support measures for promoting energy efficiency and renewables for GHG emissions reduction in non-ETS sector. Energy Procedia, 2017, 142, 2838-2843.	1.8	6
215	System Dynamics Modeling of Households' Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies, 2017, 20, 36-50.	1.4	26
216	Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households. Energy Policy, 2017, 109, 545-554.	8.8	13

#	Article	IF	CITATIONS
217	Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies, 2017, 20, 5-23.	1.4	11
218	Energy and Exergy Analysis of Wood-based CHP. Case Study. Energy Procedia, 2016, 95, 507-511.	1.8	9
219	Energy Management in Wood Pellets Production. Energy Procedia, 2016, 95, 237-242.	1.8	2
220	Chemical Composition and Potential Use of Fucus Vesiculosus from Gulf of Riga. Energy Procedia, 2016, 95, 43-49.	1.8	30
221	The Impact of Torrefaction on Coniferous Forest Residue Fuel. Energy Procedia, 2016, 95, 319-323.	1.8	5
222	CO2 Emission Trading Effect on Baltic Electricity Market. Energy Procedia, 2016, 95, 58-65.	1.8	12
223	Emergy Analysis of Biomass CHP. Case Study. Energy Procedia, 2016, 95, 366-371.	1.8	3
224	Biotechonomy Framework for Bioenergy Use. Energy Procedia, 2016, 95, 76-80.	1.8	17
225	Sustainable Development of Biomass CHP in Latvia. Energy Procedia, 2016, 95, 372-376.	1.8	8
226	Analysis of non-ETS Sector Goals Using Climate Change Indicators. Energy Procedia, 2016, 95, 98-103.	1.8	3
227	Towards Solar Urban Planning: A New Step for Better Energy Performance Case of Study Ibenbadis, Constantine (Algeria). Energy Procedia, 2016, 95, 145-152.	1.8	4
228	Evaluation of Thermal Energy Storage Capacity by Heat Load Analyses. Energy Procedia, 2016, 95, 377-384.	1.8	7
229	Charcoal Production in a Continuous Operation Retort. Experimental Data Processing. Energy Procedia, 2016, 95, 208-215.	1.8	5
230	Applicability of Combined Project Evaluation Methodology to EIA Projects. Energy Procedia, 2016, 95, 424-428.	1.8	2
231	Benchmarking Analysis of Energy Consumption in Supermarkets. Energy Procedia, 2016, 95, 435-438.	1.8	9
232	Results of Investment Analysis in Power Transmission in Latvia and Lithuania. Energy Procedia, 2016, 95, 243-248.	1.8	2
233	An Empirical Study of Analysis of Indicators for Roads Impact Assessment. Energy Procedia, 2016, 95, 249-256.	1.8	1
234	Framework for the Assessment of Household Electricity Saving by Integrating Behavioural Aspects. Energy Procedia, 2016, 95, 517-521.	1.8	7

#	Article	IF	CITATIONS
235	The Effect of Energy Efficiency Improvements on the Development of 4th Generation District Heating. Energy Procedia, 2016, 95, 522-527.	1.8	17
236	Power to Gas and Pumped Hydro Storage Potential in Latvia. Energy Procedia, 2016, 95, 528-535.	1.8	11
237	Assessment of the Thermo-physical Properties of Leaves. Energy Procedia, 2016, 95, 551-558.	1.8	2
238	Thermal Conductivity of Heat Insulation Material Made From Coniferous Needles with Potato Starch Binder. Energy Procedia, 2016, 95, 324-329.	1.8	14
239	The Methodology for Assessment of Bioeconomy Efficiency. Energy Procedia, 2016, 95, 482-486.	1.8	16
240	Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States' region. Applied Energy, 2016, 170, 278-285.	10.1	46
241	How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis. Ecological Indicators, 2016, 71, 352-358.	6.3	38
242	Forecast of Waste Generation Dynamics in Latvia. Energy Procedia, 2016, 95, 200-207.	1.8	4
243	Energy Efficiency and Energy Management Nexus. Energy Procedia, 2016, 95, 71-75.	1.8	14
244	Design of Experimental Investigations on the Effect of Equivalence Ratio, Fuel Moisture Content and Fuel Consumption on Gasification Process. Energy Procedia, 2016, 95, 189-194.	1.8	9
245	Modelling of Phase Change in Spheres for Applications in Solar Thermal Heat Storage Systems. Energy Procedia, 2016, 95, 112-118.	1.8	3
246	Legislative Framework for Sustainable Development of the 4th Generation District Heating System. Energy Procedia, 2016, 95, 344-350.	1.8	5
247	Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia. Applied Energy, 2016, 162, 1586-1592.	10.1	49
248	The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States. Applied Energy, 2016, 162, 1579-1585.	10.1	36
249	Modelling the Baltic power system till 2050. Energy Conversion and Management, 2016, 107, 67-75.	9.2	20
250	System dynamics model analysis of pathway to 4th generation district heating in Latvia. Energy, 2016, 110, 85-94.	8.8	51
251	The dynamics of technological substitution: the case of eco-innovation diffusion of surface cleaning products. Journal of Cleaner Production, 2016, 132, 279-288.	9.3	12
252	Modelling the Latvian power market to evaluate its environmental long-term performance. Applied Energy, 2016, 162, 1593-1600.	10.1	20

#	Article	IF	CITATIONS
253	An Algorithm for the Selection of Structure for Artificial Networks. Case Study: Solar Thermal Energy Systems. Energy Procedia, 2015, 72, 135-141.	1.8	7
254	Electrolysis Process Analysis by Using Low Carbon Content Additives: A Batch Test Study. Energy Procedia, 2015, 72, 196-201.	1.8	5
255	Assessment of the Amount of Coniferous Wood Waste in the Baltic States. Energy Procedia, 2015, 72, 57-63.	1.8	9
256	Biochemical Methane Potential from Anaerobic Digestion of the Macrophyte Cerathophyllum Demersum: A Batch Test study for Latvian Conditions. Energy Procedia, 2015, 72, 310-316.	1.8	7
257	Analysis of GHG Reduction in Non-ETS Energy Sector. Energy Procedia, 2015, 75, 2534-2540.	1.8	6
258	Heat Pumps Integration Trends in District Heating Networks of the Baltic States. Procedia Computer Science, 2015, 52, 835-842.	2.0	23
259	Preliminary Analysis of Anaerobic Digestion Process using Cerathophyllumdemersum and Low Carbon Content Additives: A Batch Test Study. Energy Procedia, 2015, 72, 142-147.	1.8	3
260	Decomposition Analysis of District Heating System based on Complemented Kaya Identity. Energy Procedia, 2015, 75, 1229-1234.	1.8	7
261	Combined Methodology to Evaluate Transition to Low Carbon Society. Energy Procedia, 2015, 72, 11-18.	1.8	14
262	Analysis of Electricity User Behavior: Case Study Based on Results from Extended Household Survey. Energy Procedia, 2015, 72, 79-86.	1.8	22
263	Thermal Conductivity of Freely Patterned Pine and Spruce Needles. Energy Procedia, 2015, 72, 256-262.	1.8	11
264	System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies, 2015, 16, 54-68.	1.4	29
265	Evaluation of Household Electricity Savings. Analysis of Household Electricity Demand Profile and User Activities. Energy Procedia, 2015, 72, 285-292.	1.8	26
266	Efficiency Diagram for District Heating System with Gas Condensing Unit. Energy Procedia, 2015, 72, 119-126.	1.8	15
267	Analysis of Wood Fuel CHP Operational Experience. Energy Procedia, 2015, 72, 263-269.	1.8	12
268	Development of methodology for the assessment of changes in household electricity consumption and calculation of CO _{2 emissions. International Journal of Global Warming, 2015, 8, 114.}	0.5	0
269	Assessment Method of Health Care Waste Generation in Latvia and Kazakhstan. Energy Procedia, 2015, 72, 175-179.	1.8	19
270	Economy of Heat Cost Allocation in Apartment Buildings. Energy Procedia, 2015, 72, 87-94.	1.8	12

#	Article	IF	CITATIONS
271	Cost-Benefit Analysis of Plasma-based Technologies. Energy Procedia, 2015, 72, 170-174.	1.8	12
272	Optimization of landfill Gas Use in Municipal Solid Waste Landfills in Latvia. Energy Procedia, 2015, 72, 293-299.	1.8	21
273	Comparative Multiple Regression Analysis of Household Electricity use in Latvia: Using Smart Meter Data to Examine the Effect of Different Household Characteristics. Energy Procedia, 2015, 72, 49-56.	1.8	11
274	Reducing Household Electricity Consumption through Demand Side Management: The Role of Home Appliance Scheduling and Peak Load Reduction. Energy Procedia, 2015, 72, 222-229.	1.8	47
275	Hybrid System with Biomethanation for Wind Energy Accumulation in the Baltic Countries. Energy Procedia, 2015, 75, 754-759.	1.8	2
276	Dynamic Modeling of the Environmental and Economic Aspects of Bio-Resources from Agricultural and Forestry Wastes. Procedia Earth and Planetary Science, 2015, 15, 806-812.	0.6	4
277	Combined and Mixed Methods Research in Environmental Engineering: When Two is Better Than One. Energy Procedia, 2015, 72, 300-306.	1.8	6
278	Cost Analysis of a Wood Chip Boiler House with a Gas Condenser. Energy Procedia, 2015, 75, 1214-1220.	1.8	4
279	The Use of Coniferous Greenery for Heat Insulation Material Production. Energy Procedia, 2015, 72, 209-215.	1.8	10
280	How to Assess Involvement of Electricity end User in Energy Efficiency Improvement - Analysis of Survey Results. Energy Procedia, 2015, 72, 270-277.	1.8	8
281	Outlining Innovation Diffusion Processes in Households Using System Dynamics. Case Study: Energy Efficiency Lighting. Energy Procedia, 2015, 75, 2859-2864.	1.8	13
282	SWOT Analysis Approach for Advancement of Waste-to-energy Cluster in Latvia. Energy Procedia, 2015, 72, 163-169.	1.8	26
283	Simulation of Power System with Stochastic Energy Resources and Compressed Air Energy Storage. Energy Procedia, 2015, 72, 278-284.	1.8	1
284	Modeling Syngas Composition in an Integrated System of Biomass Gasification, Electrolysis and Methanation. Energy Procedia, 2015, 75, 801-806.	1.8	4
285	Co-digestion of Macroalgae for Biogas Production: An LCA-based Environmental Evaluation. Energy Procedia, 2015, 72, 3-10.	1.8	33
286	Finding an optimal solution for biowaste management in the Baltic States. Journal of Cleaner Production, 2015, 88, 214-223.	9.3	42
287	Future biodiesel policy designs and consumption patterns in Latvia: a system dynamics model. Journal of Cleaner Production, 2015, 88, 71-82.	9.3	58
288	Dynamic modelling of a collection scheme of waste portable batteries for ecological and economic sustainability. Journal of Cleaner Production, 2015, 88, 224-233.	9.3	28

#	Article	IF	CITATIONS
289	Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector. Environmental and Climate Technologies, 2015, 15, 5-21.	1.4	12
290	System Dynamic Modeling of Low Carbon Strategy in Latvia. Energy Procedia, 2014, 61, 2164-2167.	1.8	2
291	District Heating Systems Performance Analyses. Heat Energy Tariff. Environmental and Climate Technologies, 2014, 13, 32-43.	1.4	28
292	Photoelectrical properties of indandione fragment containing azobenzene compounds. Proceedings of SPIE, 2014, , .	0.8	3
293	Smart Metering Pilot Project Results. Energy Procedia, 2014, 61, 2176-2179.	1.8	6
294	Industrial CHP optimal management in the energy market under incomplete information. , 2014, , .		1
295	Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model. Energy, 2014, 76, 210-222.	8.8	36
296	Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy and Buildings, 2014, 78, 35-42.	6.7	105
297	Sustainable development modelling for the energy sector. Journal of Cleaner Production, 2014, 63, 134-142.	9.3	38
298	Demand Side Management in Pellet Production: Internal and External Factors. Environmental and Climate Technologies, 2014, 14, 30-35.	1.4	5
299	Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation. Environmental and Climate Technologies, 2014, 14, 41-46.	1.4	17
300	Multi-criteria Analysis of District Heating Systems in Baltic States. Energy Procedia, 2014, 61, 2172-2175.	1.8	22
301	Index Decomposition Analysis for Energy Sectors in Latvia. Energy Procedia, 2014, 61, 2180-2183.	1.8	8
302	Heat Pump Application for Efficient DH Systems. Energy Procedia, 2014, 61, 2168-2171.	1.8	0
303	Evaluation of RES-E support policies in the Baltic States. , 2014, , .		2
304	Analysis of factors influencing energy efficiency in a Smart Metering Pilot. Energetika, 2014, 60, .	0.6	4
305	Sustainable Development of Renewable Energy resources. Biomass Cogeneration Plant. , 2014, , .		1
306	Indicators for the assessment of biowaste treatment throw through anaerobic digestion. , 2014, , .		0

#	Article	IF	CITATIONS
307	Industrial CHP excess heat efficient usage for cooling. Energetika, 2014, 60, .	0.6	1
308	Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler. Applied Energy, 2013, 101, 244-252.	10.1	32
309	Evaluation of economic aspects of the depositâ€refund system for packaging in Latvia. Management of Environmental Quality, 2013, 24, 311-329.	4.3	20
310	Improvement of Solar PV Efficiency. Potential Materials for Organic Photovoltaic Cells. Environmental and Climate Technologies, 2013, 12, 28-33.	0.2	3
311	Assessment of Roadside Particulate Emission Mitigation Possibil. Environmental and Climate Technologies, 2013, 12, 4-9.	0.2	5
312	Improved Project Management via Advancement in Evaluation Methodology of Regional Cooperation Environmental Projects. Environmental and Climate Technologies, 2013, 11, 57-67.	0.2	6
313	Assessing methods of PM10 and NOx emission for EIA of roads. Management of Environmental Quality, 2012, 23, 163-172.	4.3	6
314	An assessment of the potential of refuseâ€derived fuel in Latvia. Management of Environmental Quality, 2012, 23, 503-516.	4.3	8
315	Analysis of the environmental impact assessment of power energy projects in Latvia. Management of Environmental Quality, 2012, 23, 190-203.	4.3	10
316	Research of Woody Biomass Drying Process in Pellet Production. Environmental and Climate Technologies, 2012, 10, 46-50.	0.2	5
317	ECO-INTENSITY ANALYSIS FOR A CHIP-FUELLED BOILER HOUSE / EKOLOGINIO INTESYVUMO NAMÄ,, ÅILDANT SKIEDROMIS ANALIZÄ–. Journal of Environmental Engineering and Landscape Management, 2012, 20, 249-255.	1.0	6
318	Industrial Research of Condensing Unit for Natural Gas Boiler House. Environmental and Climate Technologies, 2012, 10, 34-38.	0.2	6
319	Why Biodiesel is Environmentally Better than Traditional, Fossil-based Diesel: an LCA Approach. Environmental and Climate Technologies, 2011, 7, .	0.2	1
320	Climate Technology in a Wood Chips Boiler House. Environmental and Climate Technologies, 2011, 6, .	0.2	3
321	Modelling of the District Heating System's Operation. Environmental and Climate Technologies, 2011, 6, .	0.2	2
322	Possibilities for Utilization of Solar Thermal Energy in Multi-Family Buildings in Latvia. Environmental and Climate Technologies, 2011, 6, .	0.2	4
323	Life Cycle Assessment of Biogas Production from Marine Macroalgae: a Latvian Scenario. Environmental and Climate Technologies, 2011, 6, .	0.2	5
324	How to select appropriate measures for reductions in negative environmental impact? Testing a screening method on a regional energy system. Energy, 2011, 36, 1878-1883.	8.8	13

#	Article	IF	CITATIONS
325	Comparative life cycle assessment of three biohydrogen pathways. Bioresource Technology, 2011, 102, 2684-2694.	9.6	79
326	Simplified dynamic life cycle assessment model of CO2 compression, transportation and injection phase within carbon capture and storage. Energy Procedia, 2011, 4, 2526-2532.	1.8	7
327	Life cycle assessment of biohydrogen production in photosynthetic processes. International Journal of Hydrogen Energy, 2011, 36, 7866-7871.	7.1	47
328	Compact Solar Combisystem for an Apartment Building. Environmental and Climate Technologies, 2010, 4, 29-34.	0.2	1
329	Use of Benchmark Methodology in Environmental Impact Assessment. Environmental and Climate Technologies, 2010, 4, 91-96.	0.2	Ο
330	Energy Recovery from End-of-Life Tyres: Untapped Possibility to Reduce CO2 Emissions. Environmental and Climate Technologies, 2010, 4, .	0.2	3
331	Description of Latvian Metal Production and Processing Enterprises' Air Emissions. Environmental and Climate Technologies, 2010, 5, 72-79.	0.2	1
332	Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device. Environmental and Climate Technologies, 2010, 4, .	0.2	4
333	Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA. Environmental and Climate Technologies, 2010, 4, .	0.2	5
334	Climate Change Education in the Curricula of Technical and Classical Universities. Climate Change Management, 2010, , 99-106.	0.8	2
335	Teaching Applied Geophysics at RTU: the Basics for a Fast, Green, Inexpensive Subground Investigation Method. Environmental and Climate Technologies, 2010, 5, .	0.2	1
336	Methods of Nitrogen Oxide Reduction in Pellet Boilers. Environmental and Climate Technologies, 2010, 4, .	0.2	4
337	Life cycle assessment of hydrogen produced from potato steam peels. International Journal of Hydrogen Energy, 2008, 33, 3067-3072.	7.1	35
338	District heating and market economy in Latvia. Energy, 1999, 24, 549-559.	8.8	47
339	Assessing the potential of coniferous greenery from logging residues in Latvia using a system dynamics model. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 0, 2, 219.	0.0	1
340	Analysis of Operation Mode for Complex DHS. , 0, , .		0
341	Using of Indicators for Environmental Impact Assessment in Latvia and Necessity for Indicators Validation. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 0, 1, 139.	0.0	0
342	Multicriteria Evaluaton of Efficiency in Fish Processing. , 0, , .		1

#	Article	IF	CITATIONS
343	Guidlines for Inventors "From Idea to Product― , 0, , .		0