Chun-Zhu Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7042883/chun-zhu-li-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

287	15,775	71	109
papers	citations	h-index	g-index
299 ext. papers	17,177 ext. citations	6.3 avg, IF	6.84 L-index

#	Paper	IF	Citations
287	An integrated two-step process of reforming and adsorption using biochar for enhanced tar removal in syngas cleaning. <i>Fuel</i> , 2022 , 307, 121935	7.1	2
286	Reactions and Distribution of Levoglucosan during the High-Pressure Reactive Distillation of Bio-Oil. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 6298-6305	3.9	2
285	A SAXS study of the pore structure evolution in biochar during gasification in H2O, CO2 and H2O/CO2. <i>Fuel</i> , 2021 , 292, 120384	7.1	9
284	Insights into the mechanism of tar reforming using biochar as a catalyst. Fuel, 2021, 296, 120672	7.1	6
283	Cross-polymerization between the model furans and phenolics in bio-oil with acid or alkaline catalysts. <i>Green Energy and Environment</i> , 2021 , 6, 138-149	5.7	7
282	Kinetic features of ethanol steam reforming and decomposition using a biochar-supported Ni catalyst. <i>Fuel Processing Technology</i> , 2021 , 212, 106622	7.2	11
281	High-pressure reactive distillation of bio-oil for reduced polymerisation. <i>Fuel Processing Technology</i> , 2021 , 211, 106590	7.2	5
280	In situ SAXS studies of the pore development in biochar during gasification. <i>Carbon</i> , 2021 , 172, 454-462	10.4	4
279	Enrichment of aromatic compounds during the high-pressure reactive distillation of bio-oil. <i>Fuel Processing Technology</i> , 2021 , 220, 106897	7.2	2
278	Conversion of carbonyl compounds in bio-oil during the acid/base-catalysed reactive distillation at high pressure. <i>Fuel</i> , 2021 , 304, 121492	7.1	2
277	Studies into the kinetic compensation effects of Loy Yang Brown coal during gasification in a steam environment [A mechanistic view. <i>Chemical Engineering Journal Advances</i> , 2021 , 8, 100159	3.6	3
276	Polymerization of sugars/furan model compounds and bio-oil during the acid-catalyzed conversion [A review. <i>Fuel Processing Technology</i> , 2021 , 222, 106958	7.2	4
275	Difference in tar reforming activities between biochar catalysts activated in H2O and CO2. <i>Fuel</i> , 2020 , 271, 117636	7.1	16
274	Mechanistic insights into the kinetic compensation effects during the gasification of biochar: Effects of the partial pressure of H2O. <i>Fuel</i> , 2020 , 263, 116632	7.1	7
273	Mechanistic insights into the kinetic compensation effects during the gasification of biochar in H2O. <i>Fuel</i> , 2019 , 255, 115839	7.1	10
272	High yields of solid carbonaceous materials from biomass. <i>Green Chemistry</i> , 2019 , 21, 1128-1140	10	70
271	Role of O-containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst. <i>Fuel</i> , 2019 , 253, 441-448	7.1	58

(2017-2019)

270	Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke. <i>Fuel Processing Technology</i> , 2019 , 191, 138-151	7.2	55	
269	Microkinetic modelling and reaction pathway analysis of the steam reforming of ethanol over Ni/SiO2. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 22816-22830	6.7	10	
268	Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology, 2019, 195, 106140	7.2	93	
267	Investigation into the Flow Assurance of Waxy Crude Oil by Application of Graphene-Based Novel Nanocomposite Pour Point Depressants. <i>Energy & Description</i> 2019, 33, 12330-12345	4.1	8	
266	A case study: what is leached from mallee biochars as a function of pH?. <i>Environmental Monitoring and Assessment</i> , 2018 , 190, 294	3.1	8	
265	An X-ray photoelectron spectroscopic perspective for the evolution of O-containing structures in char during gasification. <i>Fuel Processing Technology</i> , 2018 , 172, 209-215	7.2	12	
264	Oxidative pyrolysis of mallee wood biomass, cellulose and lignin. <i>Fuel</i> , 2018 , 217, 382-388	7.1	24	
263	Effects of the Particle Size and Gasification Atmosphere on the Changes in the Char Structure during the Gasification of Mallee Biomass. <i>Energy & Energy & </i>	4.1	12	
262	A self-heating oxygen pump using microchanneled ceramic membranes for portable oxygen supply. <i>Chemical Engineering Science</i> , 2018 , 192, 541-550	4.4	2	
261	High performance anode with dendritic porous structure for low temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 17849-17856	6.7	14	
260	Nanocatalysts anchored on nanofiber support for high syngas production via methane partial oxidation. <i>Applied Catalysis A: General</i> , 2018 , 565, 119-126	5.1	14	
259	Destruction of tar during volatile-char interactions at low temperature. <i>Fuel Processing Technology</i> , 2018 , 171, 215-222	7.2	49	
258	Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst. <i>Fuel</i> , 2018 , 212, 412-421	7.1	20	
257	Changes in char structure during the low-temperature pyrolysis in N2 and subsequent gasification in air of Loy Yang brown coal char. <i>Fuel</i> , 2018 , 212, 187-192	7.1	32	
256	Changes in the Biochar Chemical Structure during the Low-Temperature Gasification of Mallee Biochar in Air as Revealed with Fourier Transform Infrared/Raman and X-ray Photoelectron Spectroscopies. <i>Energy & Description</i> 2018, 32, 12545-12553	4.1	5	
255	Kinetic compensation effects in the chemical reaction-controlled regime and mass transfer-controlled regime during the gasification of biochar in O2. <i>Fuel Processing Technology</i> , 2018 , 181, 25-32	7.2	18	
254	Reaction behaviour of light and heavy components of bio-oil in methanol and in water. <i>Fuel</i> , 2018 , 232, 645-652	7.1	3	
253	Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil. <i>Fuel Processing Technology</i> , 2017 , 158, 180-190	7.2	35	

252	Pyrolysis of large mallee wood particles: Temperature gradients within a pyrolysing particle and effects of moisture content. <i>Fuel Processing Technology</i> , 2017 , 158, 163-171	7.2	21
251	Effects of char chemical structure and AAEM retention in char during the gasification at 900 °C on the changes in low-temperature char-O 2 reactivity for Collie sub-bituminous coal. <i>Fuel</i> , 2017 , 195, 253-	2759	19
250	Effects of gasification temperature and atmosphere on char structural evolution and AAEM retention during the gasification of Loy Yang brown coal. <i>Fuel Processing Technology</i> , 2017 , 159, 48-54	7.2	29
249	One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis. <i>Chemical Communications</i> , 2017 , 53, 2938-2941	5.8	69
248	Effects of thermal pretreatment and ex-situ grinding on the pyrolysis of mallee wood cylinders. <i>Fuel Processing Technology</i> , 2017 , 159, 211-221	7.2	8
247	Changes in char structure during the thermal treatment of nascent chars in N 2 and subsequent gasification in O 2. <i>Fuel</i> , 2017 , 199, 264-271	7.1	16
246	Thin ceramic membrane with dendritic microchanneled sub structure and high oxygen permeation rate. <i>Journal of Membrane Science</i> , 2017 , 541, 653-660	9.6	13
245	Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar. <i>Fuel Processing Technology</i> , 2017 , 167, 215-220	7.2	23
244	Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24098-24102	13	22
243	Effects of calcination temperature of electrospun fibrous Ni/Al 2 O 3 catalysts on the dry reforming of methane. <i>Fuel Processing Technology</i> , 2017 , 155, 246-251	7.2	38
242	Upgrading of bio-oil via acid-catalyzed reactions in alcohols IA mini review. <i>Fuel Processing Technology</i> , 2017 , 155, 2-19	7.2	74
241	Biofuel and Methyl Levulinate from Biomass-Derived Fractional Condensed Pyrolysis Oil and Alcohol. <i>Energy Technology</i> , 2017 , 5, 205-215	3.5	4
2 40	Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts. <i>Fuel Processing Technology</i> , 2017 , 155, 261-268	7.2	36
239	Effects of Alkali and Alkaline Earth Metallic Species and Chemical Structure on Nascent Chart 2 Reactivity. <i>Energy & Description of the Energy Chart Structure on Nascent Chart 2</i>	4.1	8
238	Formation of coke during the esterification of pyrolysis bio-oil. <i>RSC Advances</i> , 2016 , 6, 86485-86493	3.7	16
237	Importance of hydrogen and bio-oil inlet temperature during the hydrotreatment of bio-oil. <i>Fuel Processing Technology</i> , 2016 , 150, 132-140	7.2	26
236	An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: Effects of inorganic species in char on the reforming of tars from wood and agricultural wastes. <i>Fuel</i> , 2016 , 183, 177-184	7.1	47
235	Different reaction behaviours of the light and heavy components of bio-oil during the hydrotreatment in a continuous pack-bed reactor. <i>Fuel Processing Technology</i> , 2016 , 146, 76-84	7.2	28

(2015-2016)

234	Simultaneous hydrogenation and acid-catalyzed conversion of the biomass-derived furans in solvents with distinct polarities. <i>RSC Advances</i> , 2016 , 6, 4647-4656	3.7	21	
233	Feasibility of Direct Utilization of Biomass Gasification Product Gas Fuels in Tubular Solid Oxide Fuel Cells for On-Site Electricity Generation. <i>Energy & Dels</i> , 2016 , 30, 1849-1857	4.1	25	
232	Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al2O3 catalyst. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 118, 136-143	6	35	
231	Effects of water and alcohols on the polymerization of furan during its acid-catalyzed conversion into benzofuran. <i>RSC Advances</i> , 2016 , 6, 40489-40501	3.7	31	
230	Feasibility of tubular solid oxide fuel cells directly running on liquid biofuels. <i>Chemical Engineering Science</i> , 2016 , 154, 108-118	4.4	19	
229	Microchannel structure of ceramic membranes for oxygen separation. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3193-3199	6	15	
228	Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. <i>Fuel Processing Technology</i> , 2016 , 148, 175-183	7.2	63	
227	Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19829-19835	6.7	21	
226	Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature. <i>Applied Energy</i> , 2016 , 183, 542-551	10.7	14	
225	Changes in nascent char structure during the gasification of low-rank coals in CO2. Fuel, 2015 , 158, 711	-7 / 1:8	28	
224	Second-order Raman spectroscopy of char during gasification. <i>Fuel Processing Technology</i> , 2015 , 135, 105-111	7.2	20	
223	Formation of nascent char structure during the fast pyrolysis of mallee wood and low-rank coals. <i>Fuel</i> , 2015 , 150, 486-492	7.1	30	
222	Effects of CO2 and heating rate on the characteristics of chars prepared in CO2 and N2 atmospheres. <i>Fuel</i> , 2015 , 142, 243-249	7.1	53	
221	Upgrading biomass-derived furans via acid-catalysis/hydrogenation: the remarkable difference between water and methanol as the solvent. <i>Green Chemistry</i> , 2015 , 17, 219-224	10	86	
220	Acid-catalyzed conversion of C6 sugar monomer/oligomers to levulinic acid in water, tetrahydrofuran and toluene: Importance of the solvent polarity. <i>Fuel</i> , 2015 , 141, 56-63	7.1	57	
219	Structural transformation of nascent char during the fast pyrolysis of mallee wood and low-rank coals. <i>Fuel Processing Technology</i> , 2015 , 138, 390-396	7.2	22	
218	Effects of volatiledhar interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam. <i>Fuel</i> , 2015 , 143, 555-562	7.1	58	
217	Biomass-derived sugars and furans: Which polymerize more during their hydrolysis?. <i>Fuel Processing Technology</i> , 2015 , 137, 212-219	7.2	48	

216	Changes in char reactivity due to char®xygen and char®team reactions using victorian brown coal in a fixed-bed reactor. <i>Chinese Journal of Chemical Engineering</i> , 2015 , 23, 321-325	3.2	5
215	Importance of the aromatic structures in volatiles to the in-situ destruction of nascent tar during the volatiledhar interactions. <i>Fuel Processing Technology</i> , 2015 , 132, 31-38	7.2	31
214	Improvement of oxygen permeation through microchanneled ceramic membranes. <i>Journal of Membrane Science</i> , 2014 , 454, 444-450	9.6	20
213	Effects of volatiledhar interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part I. Roles of nascent char. <i>Fuel</i> , 2014 , 122, 60-66	7.1	75
212	Hierarchically structured NiO/CeO2 nanocatalysts templated by eggshell membranes for methane steam reforming. <i>Catalysis Today</i> , 2014 , 228, 199-205	5.3	20
211	Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst. <i>Fuel</i> , 2014 , 116, 642-649	7.1	58
210	Quantification of strong and weak acidities in bio-oil via non-aqueous potentiometric titration. <i>Fuel</i> , 2014 , 115, 652-657	7.1	26
209	Microstructure control of oxygen permeation membranes with templated microchannels. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 410-417	13	36
208	Acid-Catalyzed Conversion of Xylose in 20 Solvents: Insight into Interactions of the Solvents with Xylose, Furfural, and the Acid Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2562-2575	8.3	129
207	Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294	10-295	5 ⁴⁹
207	Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294. Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Energy & </i>	4.1	5 49 51
	Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294 Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical		
206	Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294 Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Energy & E</i>	4.1	51
206	Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294 Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Energy & E</i>	4.1 7.1	51
206 205 204	Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 294. Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Energy & </i>	7.1 7.1	51 48 25
206 205 204 203	Carbonaceous Residues during Pyrolysis. <i>Industrial & Discourt Research</i> , 2014, 53, 294 Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Discourt</i> , 2014, 28, 285-290 A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification. <i>Fuel</i> , 2014, 121, 165-172 Catalytic reforming of tar during gasification. Part V. Decomposition of NOx precursors on the char-supported iron catalyst. <i>Fuel</i> , 2014, 116, 19-24 Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions. <i>Fuel Processing Technology</i> , 2014, 126, 315-323 Inhibiting and other effects of hydrogen during gasification: Further insights from FT-Raman	7.1 7.1 7.2	51 48 25 30
206 205 204 203 202	Carbonaceous Residues during Pyrolysis. <i>Industrial & Description of Notes of Communications</i> , 2014, 53, 294. Raman Spectroscopic Investigations into Links between Intrinsic Reactivity and Char Chemical Structure. <i>Energy & Description of Communications</i> , 2014, 28, 285-290. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification. <i>Fuel</i> , 2014, 121, 165-172. Catalytic reforming of tar during gasification. Part V. Decomposition of NOx precursors on the char-supported iron catalyst. <i>Fuel</i> , 2014, 116, 19-24. Acid-treatment of C5 and C6 sugar monomers/oligomers: Insight into their interactions. <i>Fuel Processing Technology</i> , 2014, 126, 315-323. Inhibiting and other effects of hydrogen during gasification: Further insights from FT-Raman spectroscopy. <i>Fuel</i> , 2014, 116, 1-6. Microchanneled anode supports of solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2014,	7.1 7.1 7.2 7.1	51 48 25 30 34

(2013-2013)

198	Fibrous NiO/CeO2 nanocatalysts for the partial oxidation of methane at microsecond contact times. <i>RSC Advances</i> , 2013 , 3, 1341-1345	3.7	13
197	Importance of volatilethar interactions during the pyrolysis and gasification of low-rank fuels [A review. <i>Fuel</i> , 2013 , 112, 609-623	7.1	212
196	An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. <i>Fuel</i> , 2013 , 112, 646-653	7.1	93
195	FT-IR carbonyl bands of bio-oils: Importance of water. <i>Fuel</i> , 2013 , 112, 596-598	7.1	8
194	One-Pot Synthesis of Levulinic Acid/Ester from C5 Carbohydrates in a Methanol Medium. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1593-1599	8.3	92
193	A microchanneled ceramic membrane for highly efficient oxygen separation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9641	13	30
192	Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal. <i>Fuel</i> , 2013 , 103, 22-28	7.1	137
191	Catalytic steam reforming of cellulose-derived compounds using a char-supported iron catalyst. <i>Fuel Processing Technology</i> , 2013 , 116, 234-240	7.2	54
190	Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming. <i>Fuel</i> , 2013 , 106, 858-863	7.1	54
189	A study on carbon formation over fibrous NiO/CeO2 nanocatalysts during dry reforming of methane. <i>Catalysis Today</i> , 2013 , 216, 44-49	5.3	24
188	Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 117-130	6	45
187	Evolution of aromatic structures during the reforming of bio-oil: Importance of the interactions among bio-oil components. <i>Fuel</i> , 2013 , 111, 805-812	7.1	34
186	Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. <i>Fuel</i> , 2013 , 108, 400-408	7.1	62
185	Dual bed pyrolysis gasification of coal: Process analysis and pilot test. <i>Fuel</i> , 2013 , 112, 624-634	7.1	31
184	Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate. <i>Bioresource Technology</i> , 2013 , 133, 469-74	11	52
183	Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass. <i>Applied Energy</i> , 2013 , 111, 94-103	10.7	49
182	Upgrading of bio-oil into advanced biofuels and chemicals. Part I. Transformation of GC-detectable light species during the hydrotreatment of bio-oil using Pd/C catalyst. <i>Fuel</i> , 2013 , 111, 709-717	7.1	66
181	Formation of coke during the pyrolysis of bio-oil. <i>Fuel</i> , 2013 , 108, 439-444	7.1	73

180	An advanced biomass gasification technology with integrated catalytic hot gas cleaning: Part I. Technology and initial experimental results in a lab-scale facility. <i>Fuel</i> , 2013 , 108, 409-416	7.1	48
179	Upgrading of bio-oil into advanced biofuels and chemicals. Part II. Importance of holdup of heavy species during the hydrotreatment of bio-oil in a continuous packed-bed catalytic reactor. <i>Fuel</i> , 2013 , 112, 302-310	7.1	44
178	Coproduction of clean syngas and iron from woody biomass and natural goethite ore. <i>Fuel</i> , 2013 , 103, 64-72	7.1	20
177	Mechanisms and kinetic modelling of steam gasification of brown coal in the presence of volatile@har interactions. <i>Fuel</i> , 2013 , 103, 7-13	7.1	53
176	Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir. <i>Fuel</i> , 2013 , 104, 536-546	7.1	65
175	Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. <i>Fuel</i> , 2013 , 103, 512-523	7.1	38
174	Catalytic reforming of tar during gasification. Part III. Effects of feedstock on tar reforming using ilmenite as a catalyst. <i>Fuel</i> , 2013 , 103, 950-955	7.1	28
173	Acid-catalysed treatment of the mallee leaf bio-oil with methanol: Effects of molecular structure of carboxylic acids and esters on their conversion. <i>Fuel Processing Technology</i> , 2013 , 106, 569-576	7.2	21
172	Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 93, 52-62	6	86
171	Poly(furfuryl alcohol)-assisted pyrolysis synthesis of ceramic nanoparticles for solid oxide fuel cells. <i>Materials Research Bulletin</i> , 2012 , 47, 1661-1665	5.1	
170	Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam. Journal of Fuel Chemistry and Technology, 2012 , 40, 1409-1414	1.8	7
169	Changes in Char Structure during the Gasification of Mallee Wood: Effects of Particle Size and Steam Supply. <i>Energy & Energy & E</i>	4.1	23
168	Formation of Aromatic Structures during the Pyrolysis of Bio-oil. <i>Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil. Energy & Description of Aromatic Structures during the Pyrolysis of Bio-oil.</i>	4.1	115
167	Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. <i>Green Chemistry</i> , 2012 , 14, 3087	10	68
166	Esterification of bio-oil from mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: Conversion of the cyclic ether and terpenoids into hydrocarbons. <i>Bioresource Technology</i> , 2012 , 123, 249-55	11	24
165	Yield and properties of bio-oil from the pyrolysis of mallee leaves in a fluidised-bed reactor. <i>Fuel</i> , 2012 , 102, 506-513	7.1	23
164	Formation of carbon on non-porous Ni mesh during the catalytic pyrolysis of acetylene. <i>Fuel Processing Technology</i> , 2012 , 104, 319-324	7.2	4
163	Novel CO2-tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. <i>Energy and Environmental Science</i> , 2012 , 5, 5257-5264	35.4	73

(2011-2012)

162	Production of value-added chemicals from bio-oil via acid catalysis coupled with liquid[]quid extraction. <i>RSC Advances</i> , 2012 , 2, 9366	3.7	47
161	Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery. <i>ChemSusChem</i> , 2012 , 5, 1427-34	8.3	77
160	Hydrolysis and glycosidation of sugars during the esterification of fast pyrolysis bio-oil. <i>Fuel</i> , 2012 , 95, 146-151	7.1	41
159	Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. <i>Fuel</i> , 2012 , 97, 512-522	7.1	60
158	Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. <i>Green Chemistry</i> , 2011 , 13, 1676	10	186
157	Eggshell membrane-templated synthesis of highly crystalline perovskite ceramics for solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1028-1032		36
156	Removal and Recycling of Inherent Inorganic Nutrient Species in Mallee Biomass and Derived Biochars by Water Leaching. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 12143-12151	3.9	113
155	A 3D fibrous cathode with high interconnectivity for solid oxide fuel cells. <i>Electrochemistry Communications</i> , 2011 , 13, 1038-1041	5.1	19
154	Catalytic oxidation of ethane with oxygen using fluidised nanoparticle NiO catalyst. <i>Applied Catalysis A: General</i> , 2011 , 405, 166-174	5.1	16
153	An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. <i>Fuel</i> , 2011 , 90, 3417-3423	7.1	108
152	Reaction pathways of glucose during esterification: effects of reaction parameters on the formation of humin type polymers. <i>Bioresource Technology</i> , 2011 , 102, 10104-13	11	120
151	A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1755-1762	5.9	52
150	Effects of crystallite size on the kinetics and mechanism of NiO reduction with H2. <i>International Journal of Chemical Kinetics</i> , 2011 , 43, 667-676	1.4	12
149	Reforming of Volatiles from the Biomass Pyrolysis over Charcoal in a Sequence of Coke Deposition and Steam Gasification of Coke. <i>Energy & Energy & 2011</i> , 25, 5387-5393	4.1	68
148	Effect of Coal Drying on the Behavior of Inorganic Species during Victorian Brown Coal Pyrolysis and Combustion. <i>Energy & Double Supply</i> 25, 2764-2771	4.1	14
147	Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. <i>Energy & Energy & E</i>	4.1	51
146	NiO reduction with hydrogen and light hydrocarbons: Contrast between SiO2-supported and unsupported NiO nanoparticles. <i>Applied Catalysis A: General</i> , 2011 , 398, 187-194	5.1	20
145	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IX. Effects of volatile-char interactions on char #20 and char #02 reactivities. Fuel. 2011 , 90, 1655-1661	7.1	67

144	Effects of volatiledhar interactions on the evolution of char structure during the gasification of Victorian brown coal in steam. <i>Fuel</i> , 2011 , 90, 1529-1535	7.1	124
143	Catalytic reforming of tar during gasification. Part I. Steam reforming of biomass tar using ilmenite as a catalyst. <i>Fuel</i> , 2011 , 90, 1847-1854	7.1	143
142	Experimental investigation of the combustion of bituminous coal in air and O2/CO2 mixtures: 2. Variation of the transformation behaviour of mineral matter with bulk gas composition. <i>Fuel</i> , 2011 , 90, 1361-1369	7.1	18
141	Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass. <i>Fuel</i> , 2011 , 90, 2530-2537	7.1	83
140	Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. <i>Fuel</i> , 2011 , 90, 2545-2552	7.1	178
139	Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. <i>Fuel</i> , 2011 , 90, 2915-2922	7.1	242
138	Synthesis and characterization of doped La9ASi6O26.5 (AI±ICa, Sr, Ba) oxyapatite electrolyte by a water-based gel-casting route. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 6862-6874	6.7	41
137	Evolution of organically bound metals during coal combustion in air and O2/CO2 mixtures: A case study of Victorian brown coal. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 2795-2802	5.9	13
136	In-situ observation of the combustion of air-dried and wet Victorian brown coal. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1739-1746	5.9	40
135	Catalytic and Noncatalytic Mechanisms in Steam Gasification of Char from the Pyrolysis of Biomass <i>Energy & Energy & Ene</i>	4.1	106
134	HCN and NH3 formation during coal/char gasification in the presence of NO. <i>Environmental Science & Environmental & Environmen</i>	10.3	21
133	Characteristics of Gas-Phase Partial Oxidation of Nascent Tar from the Rapid Pyrolysis of Cedar Sawdust at 700 B 00 °C. <i>Energy & Energy & Company Sawdust at 700B00</i> °C. <i>Energy & Company Sawdust at 700B00</i> °C. <i>Energy & Company Sawdust at 700B00</i> °C. <i>Energy & Company Sawdust at 700B00</i> °C.	4.1	19
132	In-Situ Reforming of Tar from the Rapid Pyrolysis of a Brown Coal over Charll <i>Energy & Energy & Energ</i>	4.1	67
131	High-Speed Camera Observation of Coal Combustion in Air and O2/CO2 Mixtures and Measurement of Burning Coal Particle Velocity <i>Energy & Energy & En</i>	4.1	44
130	Bioslurry as a Fuel. 3. Fuel and Rheological Properties of Bioslurry Prepared from the Bio-oil and Biochar of Mallee Biomass Fast Pyrolysis. <i>Energy & Energy & Energ</i>	4.1	51
129	Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char. <i>Energy & Energy </i>	4.1	19
128	Thermosetting polymer templated nanoporous sinter-active layer for low temperature solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1122-1126		17
127	Combustion synthesis of ceramic nanoparticles for solid oxide fuel cells. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 593-598	1.3	2

(2009-2010)

126	Formation of NOx precursors during the pyrolysis of coal and biomass. Part X: Effects of volatiled har interactions on the conversion of coal-N during the gasification of a Victorian brown coal in O2 and steam at 800°C. Fuel, 2010 , 89, 1035-1040	7.1	15
125	In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace. <i>Fuel</i> , 2010 , 89, 2703-2712	7.1	95
124	An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2. <i>Fuel</i> , 2010 , 89, 3381-3387	7.1	80
123	Influences of minerals transformation on the reactivity of high temperature char gasification. <i>Fuel Processing Technology</i> , 2010 , 91, 404-409	7.2	30
122	Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. <i>Fuel Processing Technology</i> , 2010 , 91, 877-881	7.2	93
121	Production and fuel properties of fast pyrolysis oil/bio-diesel blends. <i>Fuel Processing Technology</i> , 2010 , 91, 296-305	7.2	92
120	Changes in char reactivity and structure during the gasification of a Victorian brown coal: Comparison between gasification in O2 and CO2. <i>Fuel Processing Technology</i> , 2010 , 91, 800-804	7.2	83
119	Effects of biomass char structure on its gasification reactivity. <i>Bioresource Technology</i> , 2010 , 101, 7935-	4B1	167
118	Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. <i>Bioresource Technology</i> , 2010 , 101, 9688-99	11	169
117	Polymer hydrogel assisted combustion synthesis of highly crystalline ceramic nanoparticles for SOFC electrolyte films. <i>Materials Chemistry and Physics</i> , 2009 , 118, 148-152	4.4	9
116	Influence of coal blending on mineral transformation at high temperatures. <i>Mining Science and Technology</i> , 2009 , 19, 300-305		4
115	Influences of mineral matter on high temperature gasification of coal char. <i>Journal of Fuel Chemistry and Technology</i> , 2009 , 37, 134-138	1.8	24
114	Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009, 88, 1810-1817	7.1	254
113	Positive and negative catalytic effects of a nickel mesh catalyst for the partial oxidation of ethane. <i>Chemical Engineering Journal</i> , 2009 , 147, 307-315	14.7	6
112	Catalytic Reactions of Ethylene and Hydrogen in a Fluidized-Bed Reactor with Ni Nanoparticles. <i>Energy & Description</i> , 23, 4866-4870	4.1	4
111	Mallee Biomass as a Key Bioenergy Source in Western Australia: Importance of Biomass Supply Chain. <i>Energy & Double Biomass Supply States and Senergy & Double Biomass Supply Senergy & Double Biomass Supply Senergy & Double Biomass Supply Senergy & Double Biomass Sener</i>	4.1	67
110	Importance of Biomass Particle Size in Structural Evolution and Reactivity of Char in Steam Gasification. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 9858-9863	3.9	30
109	Rapid Gasification of Nascent Char in Steam Atmosphere during the Pyrolysis of Na- and Ca-Ion-Exchanged Brown Coals in a Drop-Tube Reactor. <i>Energy & Description</i> 2009, 23, 4496-4501	4.1	17

Evolution of Char Structure during the Steam Gasification of Biochars Produced from the Pyrolysis 108 of Various Mallee Biomass Components. *Industrial & Engineering Chemistry Research*, **2009**, 48, 1043 1043 Shape forming of ceramics with controllable microstructure by drying-free colloidal casting. Journal 107 7 of Materials Chemistry, 2009, 19, 7070 Effects of Temperature on the Formation of Lignin-Derived Oligomers during the Fast Pyrolysis of 106 4.1 190 Mallee Woody Biomass. Energy & Dong: Fuels, 2008, 22, 2022-2032 Fast Pyrolysis of Oil Mallee Woody Biomass: Effect of Temperature on the Yield and Quality of 105 278 3.9 Pyrolysis Products. Industrial & Engineering Chemistry Research, 2008, 47, 1846-1854 Changes in Char Structure during the Gasification of a Victorian Brown Coal in Steam and Oxygen at 104 4.1 85 800 °C. Energy & amp; Fuels, 2008, 22, 4034-4038 Activity of Mesoporous Alumina Particles for Biomass Steam Reforming in a Fluidized-Bed Reactor and Its Application to a Dual-Gas-Flow Two-Stage Reactor System. Industrial & Engineering 16 103 3.9 Chemistry Research, 2008, 47, 5346-5352 Opposite effects of gas flow rate on the rate of formation of carbon during the pyrolysis of ethane 102 10.4 27 and acetylene on a nickel mesh catalyst. Carbon, 2008, 46, 1208-1217 Effects of volatiledhar interactions on the volatilisation of alkali and alkaline earth metallic species 101 7.1 91 during the pyrolysis of biomass. Fuel, 2008, 87, 1187-1194 Drastic changes in biomass char structure and reactivity upon contact with steam. Fuel, 2008, 87, 1127-1132 100 113 NH3 and HCN formation during the gasification of three rank-ordered coals in steam and oxygen. 7.1 99 24 Fuel, 2008, 87, 1102-1107 Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining 98 7.1 118 its activity. Fuel, 2008, 87, 2914-2922 Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman 7.2 76 97 spectroscopy. Fuel Processing Technology, 2008, 89, 1429-1435 Behavior of Inherent Metallic Species as a Crucial Factor for Kinetics of Steam Gasification of Char 96 38 4.1 from Coal Pyrolysis Energy & Energy & Energy & 2007, 21, 387-394 Novel Water as-Shift Reaction Catalyst from Iron-Loaded Victorian Brown Coal Energy & Energy 95 4.1 12 Fuels, 2007, 21, 395-398 Conversion of Fuel-N into HCN and NH3During the Pyrolysis and Gasification in Steam: A 94 4.1 105 Comparative Study of Coal and Biomass Energy & E NH3 formation and destruction during the gasification of coal in oxygen and steam. Environmental 10.3 93 25 Science & amp; Technology, **2007**, 41, 5505-9 Coke formation and reaction pathways of catalyst-surface-generated radicals during the pyrolysis 92 5.1 27 of ethane using Ni mesh catalyst. Applied Catalysis A: General, 2007, 316, 90-99 Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian 91 395 brown coal. Fuel, **2007**, 86, 1664-1683

(2005-2007)

90	Examination of catalytic roles of inherent metallic species in steam reforming of nascent volatiles from the rapid pyrolysis of a brown coal. <i>Fuel Processing Technology</i> , 2007 , 88, 179-185	7.2	25	
89	Humic Acids as a Complexible Fuel for Combustion Synthesis of Ceramic Nanoparticles. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 070924065850004-???	3.8	1	
88	Effects of Dewatering on the Pyrolysis and Gasification Reactivity of Victorian Brown Coal <i>Energy & Energy Energy Energy</i> 21, 399-404	4.1	20	
87	An incentive mechanism for message relaying in unstructured peer-to-peer systems 2007,		7	
86	Characterization of the Structural Features of Char from the Pyrolysis of Cane Trash Using Fourier TransformRaman Spectroscopy. <i>Energy & Double Structures</i> , 2007, 21, 1816-1821	4.1	85	
85	Interparticle Desorption and Re-adsorption of Alkali and Alkaline Earth Metallic Species within a Bed of Pyrolyzing Char from Pulverized Woody Biomass. <i>Energy & Description (1988)</i> , 20, 1294-1297	4.1	34	
84	Effects of Pretreatment in Steam on the Pyrolysis Behavior of Loy Yang Brown Coal. <i>Energy & Energy & </i>	4.1	33	
83	Formation of HCN and NH3during the Reforming of Quinoline with Steam in a Fluidized-bed Reactor. <i>Energy & Documents</i> , 2006, 20, 159-163	4.1	12	
82	Effect of iron on the gasification of Victorian brown coal with steam:enhancement of hydrogen production. <i>Fuel</i> , 2006 , 85, 127-133	7.1	86	
81	Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal. <i>Fuel</i> , 2006 , 85, 340-349	7.1	99	
80	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII. Catalysis and changes in char structure during gasification in steam. <i>Fuel</i> , 2006 , 85, 1518-1525	7.1	137	
79	Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam. <i>Fuel</i> , 2006 , 85, 1411-1417	7.1	23	
78	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. <i>Fuel</i> , 2006 , 85, 1509-1517	7.1	182	
77	FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. <i>Fuel</i> , 2006 , 85, 1700-1707	7.1	592	
76	Effects of volatiledhar interaction on the formation of HCN and NH3 during the gasification of Victorian brown coal in O2 at 500°C. <i>Fuel</i> , 2006 , 85, 2148-2154	7.1	18	
75	Char-Supported Nano Iron Catalyst for Water-Gas-Shift Reaction. <i>Chemical Engineering Research and Design</i> , 2006 , 84, 125-130	5.5	58	
74	Special IssueLasification: a Route to Clean Energy. <i>Chemical Engineering Research and Design</i> , 2006 , 84, 407-408	5.5	43	
73	Primary Release of Alkali and Alkaline Earth Metallic Species during the Pyrolysis of Pulverized Biomass. <i>Energy & Discourt Biomass</i> . Energy & Discourt States (2005), 19, 2164-2171	4.1	164	

72	Effects of volatiledhar interactions on the reactivity of chars from NaCl-loaded Loy Yang brown coal. <i>Fuel</i> , 2005 , 84, 1221-1228	7.1	70
71	Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam. <i>Fuel</i> , 2005 , 84, 371-376	7.1	47
70	Kinetics of steam gasification of nascent char from rapid pyrolysis of a Victorian brown coal. <i>Fuel</i> , 2005 , 84, 1612-1612	7.1	57
69	Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal. <i>Fuel</i> , 2005 , 84, 1586-1586	7.1	27
68	Formation of NOx precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam. <i>Fuel</i> , 2005 , 84, 2102-2108	7.1	32
67	Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO2. <i>Fuel Processing Technology</i> , 2005 , 86, 1241-1251	7.2	55
66	Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. <i>Bioresource Technology</i> , 2005 , 96, 1570-7	11	136
65	Spontaneous Generation of Tar Decomposition Promoter in a Biomass Steam Reformer. <i>Chemical Engineering Research and Design</i> , 2005 , 83, 1093-1102	5.5	51
64	Structure and Properties of Victorian Brown Coal 2004 , 11-84		14
63	Conversion of Coal-N and Coal-S during Pyrolysis, Gasification and Combustion 2004 , 286-359		2
63	Conversion of Coal-N and Coal-S during Pyrolysis, Gasification and Combustion 2004 , 286-359 Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843	7.1	128
	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a	7.1 7.1	
62	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of	,	128
62	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. <i>Fuel</i> , 2004 , 83, 1273-1279 Release of fuel-nitrogen during the gasification of Shenmu coal in O2. <i>Fuel Processing Technology</i> ,	7.1	128 81
62 61 60	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. <i>Fuel</i> , 2004 , 83, 1273-1279 Release of fuel-nitrogen during the gasification of Shenmu coal in O2. <i>Fuel Processing Technology</i> , 2004 , 85, 1053-1063 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char	7.1	128 81 15
62 61 60	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. <i>Fuel</i> , 2004 , 83, 1273-1279 Release of fuel-nitrogen during the gasification of Shenmu coal in O2. <i>Fuel Processing Technology</i> , 2004 , 85, 1053-1063 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. <i>Fuel</i> , 2004 , 83, 23-30	7.1 7.2 7.1	128 81 15
62 61 60 59 58	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. <i>Fuel</i> , 2004 , 83, 833-843 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. <i>Fuel</i> , 2004 , 83, 1273-1279 Release of fuel-nitrogen during the gasification of Shenmu coal in O2. <i>Fuel Processing Technology</i> , 2004 , 85, 1053-1063 Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. <i>Fuel</i> , 2004 , 83, 23-30 Evidence of poly-condensed aromatic rings in a Victorian brown coal. <i>Fuel</i> , 2004 , 83, 97-107 Roles of desorbed radicals and reaction products during the oxidation of methane using a nickel	7.1 7.2 7.1 7.1	128 81 15 115

(2000-2003)

54	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity?. <i>Fuel</i> , 2003 , 82, 587-593	7.1	185
53	Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN?. <i>Fuel</i> , 2003 , 82, 1159-1166	7.1	79
52	Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures?. <i>Fuel</i> , 2003 , 82, 1491-1497	7.1	56
51	Studies of the release rule of NOx precursors during gasification of coal and its char. <i>Fuel Processing Technology</i> , 2003 , 84, 243-254	7.2	21
50	Effects of radical desorption on catalyst activity and coke formation during the catalytic pyrolysis and oxidation of light alkanes. <i>Applied Catalysis A: General</i> , 2003 , 250, 83-94	5.1	17
49	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. <i>Fuel</i> , 2002 , 81, 143-149	7.1	244
48	Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed. <i>Fuel</i> , 2002 , 81, 1179-1188	7.1	19
47	Release of volatiles from the pyrolysis of a Victorian lignite at elevated pressures. Fuel, 2002, 81, 1171-	1] . <u>7</u> .8	31
46	Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge. <i>Fuel</i> , 2002 , 81, 2203-2208	7.1	105
45	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. <i>Fuel</i> , 2002 , 81, 151-158	7.1	159
44	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature. <i>Fuel</i> , 2002 , 81, 1033-1039	7.1	165
43	Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor. <i>Fuel</i> , 2002 , 81, 1977-1987	7.1	103
42	Interinfluence between Reactions on the Catalyst Surface and Reactions in the Gas Phase during the Catalytic Oxidation of Methane with Air. <i>Journal of Catalysis</i> , 2001 , 197, 315-323	7.3	16
41	Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. <i>Fuel</i> , 2001 , 80, 2131-2138	7.1	64
40	Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. <i>Fuel</i> , 2000 , 79, 1899-1906	7.1	152
39	Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis. <i>Fuel</i> , 2000 , 79, 1883-1	1889	106
38	Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. <i>Fuel</i> , 2000 , 79, 1891-1897	7.1	84
37	Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal. <i>Fuel</i> , 2000 , 79, 427-438	7.1	334

36	Fluorescence Spectroscopic Analysis of Tars from the Pyrolysis of a Victorian Brown Coal in a Wire-Mesh Reactor. <i>Energy & Double Supplements</i> 2000, 14, 476-482	4.1	44
35	Effects of Heating Rate and Ion-Exchangeable Cations on the Pyrolysis Yields from a Victorian Brown Coal. <i>Energy & Dog Name (Note: See See See See See See See See See S</i>	4.1	167
34	Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions. <i>Fuel</i> , 1998 , 77, 157-164	7.1	46
33	Cyclopenta-fused polycyclic aromatic hydrocarbons from brown coal pyrolysis. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 1677-1686		28
32	Release of HCN, NH3, and HNCO from the Thermal Gas-Phase Cracking of Coal Pyrolysis Tars. <i>Energy & Damp; Fuels</i> , 1998 , 12, 536-541	4.1	77
31	Formation of HNCO from the Rapid Pyrolysis of Coals. <i>Energy & Energy & Ene</i>	4.1	57
30	Fate of Aromatic Ring Systems during Thermal Cracking of Tars in a Fluidized-Bed Reactor. <i>Energy & Energy Energy</i> 8, 10, 1083-1090	4.1	66
29	Interactions of quartz, zircon sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatures. <i>Fuel</i> , 1996 , 75, 525-526	7.1	21
28	Loss of cations from brown coals during pyrolysis: partly an analytical artefact?. Fuel, 1996, 75, 780	7.1	4
27	Impact of temperature and fuel-nitrogen content on fuel-staged combustion with coal pyrolysis gas. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 2231-2239		10
26	An experimental study of the release of nitrogen from coals pyrolyzed in fluidized-bed reactors. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 3205-3211		23
25	The effects of pyrolysis temperature and ion-exchanged metals on the composition of brown coal tars produced in a fluidized-bed reactor. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 3287-3294		12
24	Characterization of successive time/temperature-resolved liquefaction extract fractions released from coal in a flowing-solvent reactor. <i>Fuel</i> , 1995 , 74, 37-45	7.1	51
23	Molecular masses up to 270 000 u in coal and coal-derived products by matrix assisted laser desorption ionization mass spectrometry (MALDI-m.s.). <i>Fuel</i> , 1994 , 73, 1606-1616	7.1	38
22	Liquefaction of coal and maceral concentrates in a stirred micro-autoclave and a flowing-solvent reactor. <i>Fuel</i> , 1994 , 73, 1331-1337	7.1	11
21	Characterization of coal by matrix-assisted laser desorption ionization mass spectrometry. I. The argonne coal samples. <i>Rapid Communications in Mass Spectrometry</i> , 1994 , 8, 808-814	2.2	39
20	Characterization of coal by matrix-assisted laser desorption mass spectrometry. II. Pyrolysis tars and liquefaction extracts from the argonne coal samples. <i>Rapid Communications in Mass Spectrometry</i> , 1994 , 8, 815-822	2.2	42
19	Characterization of kerogens by matrix-assisted laser desorption ionization mass spectroscopy. <i>Rapid Communications in Mass Spectrometry</i> , 1994 , 8, 823-828	2.2	20

18	Comparison of product distributions from the thermal reactions of tetralin in a stirred autoclave and a flowing-solvent reactor. <i>Fuel</i> , 1994 , 73, 789-794	7.1	18
17	Comparison of thermal breakdown in coal pyrolysis and liquefaction. <i>Fuel</i> , 1994 , 73, 851-865	7.1	62
16	Effect of reactor configuration on the yields and structures of pine-wood derived pyrolysis liquids: A comparison between ablative and wire-mesh pyrolysis. <i>Biomass and Bioenergy</i> , 1994 , 7, 155-167	5.3	32
15	Liquefaction of coals and maceral concentrates in a flowing-solvent reactor. <i>International Journal of Energy Research</i> , 1994 , 18, 215-222	4.5	2
14	UV-Fluorescence Spectroscopy of Coal Pyrolysis Tars. <i>Energy & amp; Fuels</i> , 1994 , 8, 1039-1048	4.1	127
13	Characterization of Successive Extract Fractions Released from a Sample of Coal during Liquefaction in a Flowing-Solvent Reactor. <i>Energy & Description</i> 8, 1360-1369	4.1	31
12	High mass compounds (up to 12000 u) in coal tars. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 767		16
11	Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor. <i>Fuel</i> , 1993 , 72, 1459-1468	7.1	84
10	Characterization of tars from variable heating rate pyrolysis of maceral concentrates. <i>Fuel</i> , 1993 , 72, 3-11	7.1	132
9	Effect of H2-pressure on yields and structures of liquids from the hydropyrolysis of maceral concentrates. <i>Fuel Processing Technology</i> , 1993 , 36, 327-332	7.2	4
8	Effect of H2-pressure on the structures of bio-oils from the mild hydropyrolysis of biomass. <i>Biomass and Bioenergy</i> , 1993 , 5, 155-171	5.3	29
7	Carbon clusters from coal-derived materials. <i>Rapid Communications in Mass Spectrometry</i> , 1993 , 7, 360-3	3 6 2:	21
6	Identification of molecular masses up to 270 000 u in coal and coal-derived products by matrix-assisted laser desorption mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1993 , 7, 795-799	2.2	29
5	Comparison of fast atom bombardment mass spectrometry and size exclusion chromatography in defining high molecular masses in coal-derived materials. <i>Fuel</i> , 1993 , 72, 1317-1325	7.1	26
4	Pyrolysis characteristics of macerals separated from a single coal and their artificial mixture. <i>Fuel</i> , 1991 , 70, 474-479	7.1	30
3	High mass material (>104 daltons) in a coal liquefaction extract, by laser-desorption mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 1991 , 5, 364-367	2.2	30
2	Mechanistic Insights into the Kinetic Compensation Effects during the Gasification of Loy Yang Brown Coal Char in O2. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	1
1	Some Recent Advances in the Understanding of Gas-Solid Interactions during the Gasification of Brown Coal and Biomass. <i>Ceramic Transactions</i> ,205-212	0.1	1