Catrin Günther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7042870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chromosomeâ€scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Molecular Ecology Resources, 2022, 22, 345-360.	4.8	28
2	Livestock microbial landscape patterns: Retail poultry microbiomes significantly vary by region and season. Food Microbiology, 2022, 101, 103878.	4.2	2
3	Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.	4.8	20
4	The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Scientific Reports, 2022, 12, .	3.3	6
5	Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Scientific Reports, 2021, 11, 1201.	3.3	14
6	Spatiotemporal Modulation of Flavonoid Metabolism in Blueberries. Frontiers in Plant Science, 2020, 11, 545.	3.6	42
7	Do yeasts and Drosophila interact just by chance?. Fungal Ecology, 2019, 38, 37-43.	1.6	23
8	Are <i>Drosophila</i> preferences for yeasts stable or contextual?. Ecology and Evolution, 2019, 9, 8075-8086.	1.9	13
9	Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems. Agriculture, Ecosystems and Environment, 2017, 246, 306-313.	5.3	94
10	<i>Saccharomyces eubayanus</i> and <i>Saccharomyces arboricola</i> reside in North Island native New Zealand forests. Environmental Microbiology, 2016, 18, 1137-1147.	3.8	64
11	Sporulation in soil as an overwinter survival strategy in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fov102.	2.3	34
12	The Context of Chemical Communication Driving a Mutualism. Journal of Chemical Ecology, 2015, 41, 929-936.	1.8	14
13	Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Scientific Reports, 2015, 5, 14233.	3.3	219
14	Saccharomyces cerevisiae: a nomadic yeast with no niche?. FEMS Yeast Research, 2015, 15, .	2.3	127
15	The impact of cold storage and ethylene on volatile ester production and aroma perception in â€~Hort16A' kiwifruit. Food Chemistry, 2015, 169, 5-12.	8.2	67
16	Pyrosequencing reveals regional differences in fruitâ€associated fungal communities. Environmental Microbiology, 2014, 16, 2848-2858.	3.8	143
17	Niche construction initiates the evolution of mutualistic interactions. Ecology Letters, 2014, 17, 1257-1264.	6.4	109
18	Quantifying Variation in the Ability of Yeasts to Attract Drosophila melanogaster. PLoS ONE, 2013, 8, e75332.	2.5	89

Catrin Günther

#	Article	IF	CITATIONS
19	Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME Journal, 2012, 6, 1281-1290.	9.8	122
20	Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evolutionary Biology, 2012, 12, 43.	3.2	53
21	Development of a quantitative method for headspace analysis of methylsulfanyl-volatiles from kiwifruit tissue. Food Research International, 2011, 44, 1331-1338.	6.2	12
22	Ethylene-regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in Actinidia chinensis genotypes. Journal of Plant Physiology, 2011, 168, 629-638.	3.5	18
23	Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences. Phytochemistry, 2011, 72, 700-710.	2.9	53
24	(Methylsulfanyl)alkanoate ester biosynthesis in Actinidia chinensis kiwifruit and changes during cold storage. Phytochemistry, 2010, 71, 742-750.	2.9	32
25	A distinct population of <i>Saccharomyces cerevisiae</i> in New Zealand: evidence for local dispersal by insects and humanâ€aided global dispersal in oak barrels. Environmental Microbiology, 2010, 12, 63-73.	3.8	176
26	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus</i> Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.	2.6	55
27	QUANTIFYING THE COMPLEXITIES OF <i>SACCHAROMYCES CEREVISIAE</i> 'S ECOSYSTEM ENGINEERING VIA FERMENTATION. Ecology, 2008, 89, 2077-2082.	3.2	128
28	Metabolism of Reactive Oxygen Species Is Attenuated in Leghemoglobin-Deficient Nodules of Lotus japonicus. Molecular Plant-Microbe Interactions, 2007, 20, 1596-1603.	2.6	53
29	Sex increases the efficacy of natural selection in experimental yeast populations. Nature, 2005, 434, 636-640.	27.8	399
30	Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Current Biology, 2005, 15, 531-535.	3.9	350
31	Population Genetics of the Wild Yeast Saccharomyces paradoxus. Genetics, 2004, 166, 43-52.	2.9	143
32	The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. Frontiers in Plant Science, 0, 13, .	3.6	8