Yanrui Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/70426/publications.pdf

Version: 2024-02-01

		1040056	1474206	
13	299	9	9	
papers	citations	h-index	g-index	
13	13	13	333	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	METTL3-m6A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Molecular Therapy, 2022, 30, 932-946.	8.2	42
2	Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal of Clinical Investigation, 2022, 132, .	8.2	28
3	Predisposition to and Prognosis of Thyroid Cancer May Not Be Affected by Graves' Disease, But Some Questions Still Remain. Clinical Thyroidology, 2022, 34, 59-62.	0.1	0
4	A Glycolysis-Related Five-Gene Signature Predicts Biochemical Recurrence-Free Survival in Patients With Prostate Adenocarcinoma. Frontiers in Oncology, 2021, 11, 625452.	2.8	14
5	High Serum TRAb Levels at Birth May Result in Various Types of Neonatal Thyroid Dysfunction. Clinical Thyroidology, 2021, 33, 213-216.	0.1	1
6	Intensity of Thyroid Hormone Treatment in Hypothyroidism Is a Modifiable Risk Factor for Incident Stroke. Clinical Thyroidology, 2021, 33, 342-345.	0.1	0
7	Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal of Experimental Medicine, 2021, 218, .	8.5	66
8	Asthmatic Patients Have an Increased Risk of Hyperthyroidism. Clinical Thyroidology, 2021, 33, 523-525.	0.1	0
9	Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. Journal of Molecular and Cellular Cardiology, 2020, 138, 291-303.	1.9	14
10	TET1 is a Tumor Suppressor That Inhibits Papillary Thyroid Carcinoma Cell Migration and Invasion. International Journal of Endocrinology, 2020, 2020, 1-9.	1.5	14
11	Human tissue inhibitor of metalloproteinasesâ€1 improved wound healing in diabetes through its antiâ€apoptotic effect. Experimental Dermatology, 2019, 28, 528-535.	2.9	25
12	MicroRNA-222 Promotes Invasion and Metastasis of Papillary Thyroid Cancer Through Targeting Protein Phosphatase 2 Regulatory Subunit B Alpha Expression. Thyroid, 2018, 28, 1162-1173.	4.5	46
13	<i>MiR-195</i> Inhibits Tumor Growth and Metastasis in Papillary Thyroid Carcinoma Cell Lines by Targeting <i>CCND1</i> And <i>FGF2</i> And <i>GREEN And Comments of Endocrinology, 2017, 2017, 1-12.</i>	1.5	49