
Poorandokht Ilani-Kashkouli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7042481/publications.pdf Version: 2024-02-01

Poorandokht

#	Article	IF	CITATIONS
1	Tracking ion intercalation into layered Ti ₃ C ₂ MXene films across length scales. Energy and Environmental Science, 2020, 13, 2549-2558.	15.6	100
2	Asphaltene precipitation due to natural depletion of reservoir: Determination using a SARA fraction based intelligent model. Fluid Phase Equilibria, 2013, 354, 177-184.	1.4	95
3	Development of a group contribution method for determination of viscosity of ionic liquids at atmospheric pressure. Chemical Engineering Science, 2012, 80, 326-333.	1.9	68
4	Group contribution model for estimation of surface tension of ionic liquids. Chemical Engineering Science, 2012, 78, 204-208.	1.9	51
5	Development of a group contribution method for the estimation of heat capacities of ionic liquids. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1863-1882.	2.0	47
6	Computation of normal melting temperature of ionic liquids using a group contribution method. Fluid Phase Equilibria, 2012, 329, 1-7.	1.4	44
7	Gene expression programming strategy for estimation of flash point temperature of non-electrolyte organic compounds. Fluid Phase Equilibria, 2012, 329, 71-77.	1.4	40
8	Standard molar chemical exergy: A new accurate model. Energy, 2018, 158, 924-935.	4.5	37
9	Quantitative structure—property relationship for thermal decomposition temperature of ionic liquids. Chemical Engineering Science, 2012, 84, 557-563.	1.9	35
10	QSPR molecular approach for representation/prediction of very large vapor pressure dataset. Chemical Engineering Science, 2012, 76, 99-107.	1.9	31
11	Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids. Chemical Engineering Research and Design, 2014, 92, 66-79.	2.7	30
12	Determination of Vapor Pressure of Chemical Compounds: A Group Contribution Model for an Extremely Large Database. Industrial & Engineering Chemistry Research, 2012, 51, 7119-7125.	1.8	29
13	Determination of the glass transition temperature of ionic liquids: A molecular approach. Thermochimica Acta, 2012, 543, 88-95.	1.2	27
14	A "non-linear―quantitative structure–property relationship for the prediction of electrical conductivity of ionic liquids. Chemical Engineering Science, 2013, 101, 478-485.	1.9	27
15	Development of a general model for determination of thermal conductivity of liquid chemical compounds at atmospheric pressure. AICHE Journal, 2013, 59, 1702-1708.	1.8	26
16	An accurate model for the prediction of the glass transition temperature of ammonium based ionic liquids: A QSPR approach. Fluid Phase Equilibria, 2012, 324, 50-63.	1.4	25
17	Estimation of the Heat Capacity of Ionic Liquids: A Quantitative Structure–Property Relationship Approach. Industrial & Engineering Chemistry Research, 2013, 52, 13217-13221.	1.8	24
18	A group contribution model for determining the sublimation enthalpy of organic compounds at the standard reference temperature of 298K. Fluid Phase Equilibria, 2013, 354, 265-285.	1.4	23

POORANDOKHT

#	Article	IF	CITATIONS
19	Determination of the normal boiling point of chemical compounds using a quantitative structure–property relationship strategy: Application to a very large dataset. Fluid Phase Equilibria, 2013, 354, 250-258.	1.4	23
20	Hydrate phase equilibria for CO2, CH4, or N2Â+Âtetrabutylphosphonium bromide (TBPB) aqueous solution. Fluid Phase Equilibria, 2016, 411, 88-92.	1.4	23
21	Interfacial reactions of Cu(<scp>ii</scp>) adsorption and hydrolysis driven by nano-scale confinement. Environmental Science: Nano, 2020, 7, 68-80.	2.2	23
22	A group contribution method for estimation of glass-transition temperature of 1,3-dialkylimidazolium ionic liquids. Journal of Thermal Analysis and Calorimetry, 2013, 114, 1363-1382.	2.0	22
23	Development of a group contribution method for estimating the thermal decomposition temperature of ionic liquids. Fluid Phase Equilibria, 2013, 355, 81-86.	1.4	22
24	Estimation of lower flammability limit temperature of chemical compounds using a corresponding state method. Fuel, 2013, 103, 899-904.	3.4	22
25	A group contribution method for determination of the standard molar chemical exergy of organic compounds. Energy, 2014, 70, 288-297.	4.5	20
26	A group contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298K. Fluid Phase Equilibria, 2013, 360, 279-292.	1.4	19
27	An assessment test for phase equilibrium data of water soluble and insoluble clathrate hydrate formers. Fluid Phase Equilibria, 2013, 360, 68-76.	1.4	18
28	Development of a quantitative structure–liquid thermal conductivity relationship for pure chemical compounds. Fluid Phase Equilibria, 2013, 355, 52-80.	1.4	17
29	A group contribution method for estimation of glass transition temperature ionic liquids. Chemical Engineering Science, 2012, 81, 91-105.	1.9	16
30	Determination of the speed of sound in ionic liquids using a least squares support vector machine group contribution method. Fluid Phase Equilibria, 2014, 367, 188-193.	1.4	16
31	Group Contribution Model for the Prediction of Refractive Indices of Organic Compounds. Journal of Chemical & Engineering Data, 2014, 59, 1930-1943.	1.0	16
32	Interaction of Phosphate with Lithium Cobalt Oxide Nanoparticles: A Combined Spectroscopic and Calorimetric Study. Langmuir, 2019, 35, 16640-16649.	1.6	16
33	QSPR Molecular Approach for Estimating Henry's Law Constants of Pure Compounds in Water at Ambient Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 4764-4767.	1.8	15
34	Computation of Upper Flash Point of Chemical Compounds Using a Chemical Structure-Based Model. Industrial & Engineering Chemistry Research, 2012, 51, 5103-5107.	1.8	14
35	Defining silica–water interfacial chemistry under nanoconfinement using lanthanides. Environmental Science: Nano, 2021, 8, 432-443.	2.2	12
36	Quantitative Structure–Property Relationship Study to Predict Speed of Sound in Diverse Organic Solvents from Solvent Structural Information. Industrial & Engineering Chemistry Research, 2012, 51, 14884-14891.	1.8	10

POORANDOKHT

#	Article	IF	CITATIONS
37	Corresponding States Method for Estimation of Upper Flammability Limit Temperature of Chemical Compounds. Industrial & Engineering Chemistry Research, 2012, 51, 6265-6269.	1.8	9
38	A chemical structure based model for the determination of speed of sound in ionic liquids. Journal of Molecular Liquids, 2014, 196, 7-13.	2.3	9
39	Gas hydrate phase equilibrium in porous media: An assessment test for experimental data. Fluid Phase Equilibria, 2013, 360, 161-168.	1.4	8
40	Thermodynamic stability conditions for semi-clathrate hydrates of CO 2 , CH 4 , or N 2 with tetrabutyl ammonium nitrate (TBANO 3) aqueous solution. Journal of Chemical Thermodynamics, 2016, 96, 52-56.	1.0	7
41	A chemical structure based model for the estimation of refractive indices of organic compounds. Fluid Phase Equilibria, 2014, 384, 1-13.	1.4	6
42	A group contribution model for the prediction of the freezing point of organic compounds. Fluid Phase Equilibria, 2014, 382, 21-30.	1.4	6
43	A group contribution method for determination of thermal conductivity of liquid chemicals at atmospheric pressure. Journal of Molecular Liquids, 2014, 190, 223-230.	2.3	6
44	A chemical structure-based model for estimating speed of sound in liquids. Journal of Thermal Analysis and Calorimetry, 2014, 116, 529-538.	2.0	5
45	Hydrate Dissociation Data for the Systems (CO ₂ /CH ₄ /Ar) + Water with (TBAF/TBAA/TBPB/TBANO ₃ and Cyclopentane). Journal of Chemical & Engineering Data, 2019, 64, 2542-2549.	1.0	4
46	Toward a group contribution method for determination of speed of sound in saturated liquids. Journal of Molecular Liquids, 2014, 194, 159-165.	2.3	3
47	Are the reservoir fluid compositional grading data reliable?. Fluid Phase Equilibria, 2014, 363, 27-31.	1.4	3