
Marie-Louise HammarskjĶld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7042336/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intron retention and its impact on gene expression and protein diversity: A review and a practical guide. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1631.	6.4	33
2	Upregulation of human endogenous retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers. Journal of Pediatric Surgery, 2021, 56, 286-292.	1.6	12
3	Development of a pseudovirus assay and evaluation to screen natural products for inhibition of HIV-1 subtype C reverse transcriptase. Journal of Ethnopharmacology, 2020, 258, 112931.	4.1	2
4	Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Current HIV Research, 2020, 18, 85-98.	0.5	8
5	Characterization of APOBEC3 variation in a population of HIV-1 infected individuals in northern South Africa. BMC Medical Genetics, 2019, 20, 21.	2.1	18
6	A novel retroviral vector system to analyze expression from mRNA with retained introns using fluorescent proteins and flow cytometry. Scientific Reports, 2019, 9, 6467.	3.3	4
7	Evolution of the HIV-1 Rev Response Element during Natural Infection Reveals Nucleotide Changes That Correlate with Altered Structure and Increased Activity over Time. Journal of Virology, 2019, 93, .	3.4	14
8	Ly49R activation receptor drives self-MHC–educated NK cell immunity against cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26768-26778.	7.1	10
9	HIV-1 Rev interacts with HERV-K RcREs present in the human genome and promotes export of unspliced HERV-K proviral RNA. Retrovirology, 2019, 16, 40.	2.0	14
10	Intron retention in viruses and cellular genes: Detention, border controls and passports. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1470.	6.4	29
11	Next generation sequencing reveals a high frequency of CXCR4 utilizing viruses in HIV-1 chronically infected drug experienced individuals in South Africa. Journal of Clinical Virology, 2018, 103, 81-87.	3.1	5
12	SR proteins: To shuttle or not to shuttle, that is the question. Journal of Cell Biology, 2017, 216, 1875-1877.	5.2	11
13	High level of HIV-1 drug resistance mutations in patients with unsuppressed viral loads in rural northern South Africa. AIDS Research and Therapy, 2017, 14, 36.	1.7	26
14	Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA. Bioorganic and Medicinal Chemistry, 2016, 24, 3947-3952.	3.0	12
15	An <i>NXF1</i> mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Molecular Biology of the Cell, 2016, 27, 3903-3912.	2.1	29
16	Effect of intercalator and Lewis acid–base branched peptide complex formation: boosting affinity towards HIV-1 RRE RNA. MedChemComm, 2016, 7, 1436-1440.	3.4	8
17	Rev–RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates. AIDS Research and Human Retroviruses, 2016, 32, 923-934.	1.1	25
18	RNA and lessons from viruses. Rna, 2015, 21, 632-633.	3.5	0

#	Article	IF	CITATIONS
19	Evolutionary conservation of a molecular machinery for export and expression of mRNAs with retained introns. Rna, 2015, 21, 426-437.	3.5	15
20	The HIV-1 Rev response element (RRE) adopts alternative conformations that promote different rates of virus replication. Nucleic Acids Research, 2015, 43, 4676-4686.	14.5	58
21	Limited Nucleotide Changes in the Rev Response Element (RRE) during HIV-1 Infection Alter Overall Rev-RRE Activity and Rev Multimerization. Journal of Virology, 2013, 87, 11173-11186.	3.4	30
22	Molecular epidemiology of HIV in two highly endemic areas of northeastern South Africa. Archives of Virology, 2012, 157, 455-465.	2.1	8
23	The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. Rna, 2011, 17, 1344-1356.	3.5	79
24	Single-Nucleotide Changes in the HIV Rev-Response Element Mediate Resistance to Compounds That Inhibit Rev Function. Journal of Virology, 2011, 85, 3940-3949.	3.4	16
25	A Long-Awaited Structure Is Rev-ealed. Viruses, 2011, 3, 484-492.	3.3	9
26	Trafficking through the Rev/RRE Pathway Is Essential for Efficient Inhibition of Human Immunodeficiency Virus Type 1 by an Antisense RNA Derived from the Envelope Gene. Journal of Virology, 2009, 83, 940-952.	3.4	11
27	Probing the HIV-1 Genomic RNA Trafficking Pathway and Dimerization by Genetic Recombination and Single Virion Analyses. PLoS Pathogens, 2009, 5, e1000627.	4.7	95
28	Heterocyclic Compounds That Inhibit Rev-RRE Function and Human Immunodeficiency Virus Type 1 Replication. Antimicrobial Agents and Chemotherapy, 2008, 52, 3169-3179.	3.2	45
29	Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14365-14370.	7.1	53
30	The Shuttling SR Protein 9G8 Plays a Role in Translation of Unspliced mRNA Containing a Constitutive Transport Element. Journal of Biological Chemistry, 2007, 282, 19844-19853.	3.4	77
31	Genotype testing and antiretroviral resistance profiles from HIV-1 patients experiencing therapeutic failure in northeast Brazil. Brazilian Journal of Infectious Diseases, 2007, 11, 390-4.	0.6	8
32	An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature, 2006, 443, 234-237.	27.8	117
33	The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes and Development, 2006, 20, 1597-1608.	5.9	75
34	Intron Retention Generates a Novel Id3 Isoform That Inhibits Vascular Lesion Formation. Journal of Biological Chemistry, 2004, 279, 32897-32903.	3.4	51
35	Human Immunodeficiency Virus Type 1 Nef Associates with Lipid Rafts To Downmodulate Cell Surface CD4 and Class I Major Histocompatibility Complex Expression and To Increase Viral Infectivity. Journal of Virology, 2004, 78, 1685-1696.	3.4	58
36	Sam68 Enhances the Cytoplasmic Utilization of Intron-Containing RNA and Is Functionally Regulated by the Nuclear Kinase Sik/BRK. Molecular and Cellular Biology, 2003, 23, 92-103.	2.3	99

#	Article	IF	CITATIONS
37	Tap and NXT promote translation of unspliced mRNA. Genes and Development, 2003, 17, 3075-3086.	5.9	83
38	Design and Use of an Inducibly Activated Human Immunodeficiency Virus Type 1 Nef To Study Immune Modulation. Journal of Virology, 2001, 75, 834-843.	3.4	29
39	RNA Export Mediated by Tap Involves NXT1-dependent Interactions with the Nuclear Pore Complex. Journal of Biological Chemistry, 2001, 276, 44953-44962.	3.4	61
40	Epstein–Barr virus latent membrane protein (LMP1) induces specific NFκB complexes in human T-lymphoid cells. Virus Research, 2000, 67, 17-30.	2.2	5
41	Regulation of retroviral RNA export. Seminars in Cell and Developmental Biology, 1997, 8, 83-90.	5.0	50
42	A class of nonribosomal nucleolar components is located in chromosome periphery and in nucleolus-derived foci during anaphase and telophase. Chromosoma, 1997, 105, 407-417.	2.2	85
43	Expression and Purification of the HIV Type 1 Rev Protein Produced in <i>Escherichia coli</i> and Its Use in the Generation of Monoclonal Antibodies. AIDS Research and Human Retroviruses, 1995, 11, 945-953.	1.1	14
44	Human T-cell lymphotrophic virus type-I (HTLV-I) retrovirus and human disease. Journal of Emergency Medicine, 1994, 12, 825-832.	0.7	2
45	Schistosoma mansoni: Cloning of a complementary DMA encoding a cytosolic superoxide dismutase and high-yield expression of the enzymatically active gene product in Escherichia coli. Experimental Parasitology, 1992, 75, 308-322.	1.2	37
46	Regulation of HIV expression. Aids, 1991, 5, 3-14.	2.2	48
47	Antibodies in human sera against the Epstein-Barr virus encoded latent membrane protein (LMP). Immunology Letters, 1988, 18, 301-306.	2.5	4
48	High-level expression of the Epstein-Barr virus EBNA1 protein in CV1 cells and human lymphoid cells using a SV40 late replacement vector. Gene, 1986, 43, 41-50.	2.2	70
49	Lymphoblastoid cell lines and burkitt-lymphoma-derivee cell lines differ in the expression of a second epstein-barr virus encoded nuclear antigen. International Journal of Cancer, 1986, 38, 729-737.	5.1	53
50	Isolation of DNA from agarose gels using DEAE-paper. Application to restriction site mapping of adenovirus type 16 DNA. Nucleic Acids Research, 1980, 8, 253-264.	14.5	184
51	Encapsidation of adenovirus 16 DNA is directed by a small DNA sequence at the left end of the genome. Cell, 1980, 20, 787-795.	28.9	134
52	GENETIC VARIABILITY OF ADENOVIRUSES. Annals of the New York Academy of Sciences, 1980, 354, 16-42.	3.8	253