
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiation Physics and Chemistry, 2019, 160, 41-47.	1.4	190
2	Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering. Applied Surface Science, 2010, 256, 6420-6426.	3.1	87
3	Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application. Journal of Luminescence, 2019, 216, 116738.	1.5	86
4	Molecular dynamics simulation and luminescence properties of Eu3+ doped molybdenum gadolinium borate glasses for red emission. Journal of Alloys and Compounds, 2020, 813, 151914.	2.8	73
5	Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles. Journal of Non-Crystalline Solids, 2012, 358, 1667-1672.	1.5	70
6	Investigations of optical and luminescence features of Sm3+ doped Li2O-MO-B2O3 (MÂ=Mg/Ca/Sr/Ba) glasses mixed with different modifier oxides as an orange light emitting phosphor for WLED's. Journal of Alloys and Compounds, 2018, 749, 197-204.	2.8	68
7	Spectroscopic properties of Sm 3+ -doped lanthanum borogermanate glass. Journal of Luminescence, 2014, 156, 192-198.	1.5	64
8	Photoluminescence and white light generation of Dy2O3 doped Li2O-BaO-Gd2O3- SiO2 for white light LED. Journal of Alloys and Compounds, 2019, 774, 244-254.	2.8	63
9	Development of Eu3+ doped Li2O-BaO-GdF3-SiO2 oxyfluoride glass for efficient energy transfer from Gd3+ to Eu3+ in red emission solid state device application. Journal of Luminescence, 2018, 203, 515-524.	1.5	51
10	Influence of alkaline earth oxides on Eu3+ doped lithium borate glasses for photonic, laser and radiation detection material applications. Solid State Sciences, 2019, 89, 57-66.	1.5	49
11	Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses. Optical Materials, 2019, 88, 429-444.	1.7	46
12	Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications. Journal of Rare Earths, 2019, 37, 374-382.	2.5	46
13	Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Optical Materials, 2020, 107, 110018.	1.7	43
14	Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application. Journal of Non-Crystalline Solids, 2020, 550, 120386.	1.5	42
15	Energy transfer phenomenon of Gd3+ to excited ground state of Eu3+ ions in Li2O-BaO-Gd2O3-SiO2-Eu2O3 glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 21-29.	2.0	41
16	Physical and luminescence properties of samarium doped oxide and oxyfluoride phosphate glasses. Materials Chemistry and Physics, 2019, 229, 514-522.	2.0	40
17	Luminescence characteristics of Sm3+-doped lithium barium gadolinium silicate glasses for Orange LED's. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 14-20.	2.0	39
18	Investigation of XANES study and energy transport phenomenon of Gd3+ to Ce3+ in CaO–SiO2–B2O3 glasses. Optical Materials, 2020, 102, 109826.	1.7	35

#	Article	IF	CITATIONS
19	Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass. Journal of Non-Crystalline Solids, 2014, 406, 107-110.	1.5	31
20	1.5â€Î¼m luminescence enhancement of Er3+ by local field surface plasmon resonance of Ag nanoparticles in silicate glasses. Journal of Non-Crystalline Solids, 2019, 521, 119522.	1.5	31
21	Effect of sodium oxide and sodium fluoride in gadolinium phosphate glasses doped with Eu2O3 content. Journal of Luminescence, 2020, 219, 116950.	1.5	30
22	Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications. Journal of Non-Crystalline Solids, 2020, 538, 120010.	1.5	30
23	Structural analysis and luminescence studies of Ce3+: Dy3+ co-doped calcium zinc gadolinium borate glasses using EXAFS. Radiation Physics and Chemistry, 2020, 171, 108695.	1.4	30
24	Effect of Gd2O3 on the radiation shielding, physical, optical and luminescence behaviors of Gd2O3–La2O3–ZnO–B2O3–Dy2O3 glasses. Radiation Physics and Chemistry, 2021, 185, 109500.	1.4	28
25	An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	27
26	Photoluminescence properties and energy transfer investigations of Gd3+ and Sm3+ co-doped ZnO–BaO–TeO2 glasses for solid state laser application. Journal of Luminescence, 2020, 224, 117275.	1.5	27
27	Enhanced non-linear optical properties of Eu3+ activated glasses by embedding silver nanoparticles. Ceramics International, 2021, 47, 16801-16808.	2.3	27
28	Impact of solvents on energy gap, photophysical, photometric properties for a new class of 4-HCM coumarin derivative: Nonlinear optical studies and optoelectronic applications. Journal of Molecular Liquids, 2019, 292, 111383.	2.3	26
29	Physical, optical properties and radiation shielding studies of xLa2O3-(100-x)B2O3 glass system. Ceramics International, 2020, 46, 5380-5386.	2.3	26
30	Role of 5Âmol% Mg-Ni on the Structural and Magnetic Properties of Cobalt Chromates Crystallites Prepared by Solution Combustion Technique. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2861-2866.	0.8	26
31	Reddish-orange emission and Judd-Ofelt investigation of Sm3+ ions doped in zince-bismuth-phospho-tellurite glasses for solid lighting application. Journal of Luminescence, 2020, 226, 117498.	1.5	26
32	Dy3+ ions doped (Na2O/NaF)-Gd2O3–P2O5 glasses for solid state lighting material applications. Solid State Sciences, 2019, 97, 105972.	1.5	25
33	Comparative study of optical and luminescence properties of Sm3+-ions doped Li2O–Gd2O3–PbO–SiO2 and Li2O-GdF3-PbO–SiO2 glasses for orange emission solid state device application. Journal of Luminescence, 2020, 222, 117136.	1.5	25
34	Dy3+ doped B2O3 – Li2O – CaO – CaF2 glass for efficient white light emitting sources. Journal of Non-Crystalline Solids, 2021, 554, 120604.	1.5	24
35	Characterization and structural studies of lithium doped lead zinc phosphate glass system. Materials Chemistry and Physics, 2012, 133, 249-252.	2.0	20
36	Physical, structural, optical, and radiation shielding properties of B2O3–Gd2O3–Y2O3 glass system. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	20

#	Article	IF	CITATIONS
37	Photoluminescence Properties of Dy3+ Ion-Doped Li2O-PbO-Gd2O3-SiO2 Glasses for White Light Application. Brazilian Journal of Physics, 2019, 49, 605-614.	0.7	19
38	Structural and luminescence study of Dy3+ doped phosphate glasses for solid state lighting applications. Optical Materials, 2020, 109, 110322.	1.7	19
39	Sm3+-Doped Molybdenum Gadolinium Borate Glasses for Orange Emission Laser Active Medium. Ukrainian Journal of Physics, 2018, 63, 721.	0.1	14
40	Energy Transfer and Spectroscopic Investigation of Dy2O3 Doped Li2O–BaO–GdF3–SiO2 for White Light LED. Glass Physics and Chemistry, 2019, 45, 332-343.	0.2	13
41	X-ray radiation shielding of CeO2 doped borosilicate glasses and their luminescence characteristics. Radiation Physics and Chemistry, 2022, 191, 109825.	1.4	13
42	Spectroscopy Study of Sm3+ Doped Fluorosilicate Glasses for Orange Emission Solid-State Device Application. Glass Physics and Chemistry, 2019, 45, 447-458.	0.2	12
43	Precursor Based Tuning of the Nonlinear Optical Properties of Au-Ag Bimetallic Nanoparticles Doped in Oxy-fluoroborate Glasses. Journal of Non-Crystalline Solids, 2021, 561, 120766.	1.5	12
44	Characterization and structural studies of vanadium doped lithium–barium–phosphate glasses. Canadian Journal of Physics, 2012, 90, 235-239.	0.4	11
45	Development of ZnO–BaO–B2O3–TeO2 glass doped with Sm3+ for orange emitting material. Solid State Sciences, 2019, 98, 106041.	1.5	11
46	Nonlinear optical, optical limiting and radiation shielding features of Eu3+ activated borate glasses. Optik, 2021, 232, 166563.	1.4	10
47	White Light Emission of Dy ³⁺ Doped Oxy-Fluoride Phosphate Glass System for Active Laser Medium. Integrated Ferroelectrics, 2022, 224, 1-12.	0.3	10
48	Optical and structural properties of Eu3+ doped MgO–Li2O–Na2O–BaO–B2O3 glasses for scintillating glass applications. Radiation Physics and Chemistry, 2022, 199, 110295.	1.4	10
49	Optical and radiative properties of Nd ³⁺ -doped lead tellurite borate glasses. Canadian Journal of Physics, 2013, 91, 322-327.	0.4	9
50	Optical properties of Sm3+ doped in CaO-Al2O3-Na2O-BaO-B2O3 glasses for under-sea optical device applications. Optik, 2022, 262, 169366.	1.4	9
51	Sm3+ Doped Lithium Strontium Borate Glasses for Solid State Lighting Applications. Glass Physics and Chemistry, 2019, 45, 472-484.	0.2	8
52	Influence of trivalent praseodymium ion on SiO2–B2O3–Al2O3– BaO–CaO–Sb2O3–Na2O–Pr2O3 for X-Rays shielding and luminescence materials. Radiation Physics and Chemistry, 2021, 184, 109467.	3 glasses 9.4	8
53	Radiation shielding properties of BaO:WO ₃ :Na ₂ O:B ₂ O ₃ glass system using WinXCom program in the range of 1 keV to 100 GeV: Theoretical calculation. Journal of Physics: Conference Series, 2019, 1259, 012009.	0.3	6
54	Effect of SnO2/SeO2 on Au nano-particles doped silicate glasses: a structural study using XAS and EXAFS refinements. Optical and Quantum Electronics, 2020, 52, 1.	1.5	6

#	Article	IF	CITATIONS
55	Structural studies of transition metal ions doped in biomass ash as silica source for glass production in Thailand. Journal of Physics: Conference Series, 2018, 1120, 012104.	0.3	5
56	White emission from Dy3+ doped Gd2O3-B2O3 glass for WLEDs encapsulation. Optik, 2022, 265, 169532.	1.4	5
57	Eu ³⁺ ions doped SrO-CaO-Li ₂ O ₋ B ₂ O ₃ glasses foroptical display material application. Journal of Physics: Conference Series, 2020, 1485, 012053.	0.3	4
58	X-ray induced luminescence, optical, compositional and structural investigations of natural and imitation rubies: Identification technique. Radiation Physics and Chemistry, 2020, 177, 109089.	1.4	4
59	Spectral Analysis of Ho3+ Doped Barium Zinc Boro-Tellurite Glasses for Yellow-Green Luminescent Applications. Glass Physics and Chemistry, 2019, 45, 29-35.	0.2	3
60	Spectroscopy Characterization of MWCNT Doped B ₂ O ₃ -Gd ₂ O ₃ -ZnO-Er ₂ O ₃ Glass for NIR Solid State Application. Integrated Ferroelectrics, 2021, 214, 136-142.	0.3	3
61	The Physical, Optical, Photo and Radioluminescence Studies of Dy3+ Doped Zinc Barium Gadolinium Phosphate Glasses. Glass Physics and Chemistry, 2020, 46, 474-486.	0.2	3
62	Glass material and their advanced applications. KnE Social Sciences, 0, , .	0.1	3
63	Dy ³⁺ -Doped Li ₂ O: BaO: Gd ₂ O ₃ : SiO ₂ Glasses for Luminescence Applications. Integrated Ferroelectrics, 2022, 224, 71-83.	0.3	3
64	Elastic properties of Li+ doped lead zinc borate glasses. AIP Conference Proceedings, 2014, , .	0.3	2
65	Photoluminescence properties of Bi2MoO6:Dy3+ phosphors fabricated by solid state reactions. AIP Conference Proceedings, 2020, , .	0.3	2
66	Comparative Study on Au-Ag composition in Lithium Zinc Calcium Fluroborate Glasses: Nonlinear Optics Perspective. Journal of Physics: Conference Series, 2021, 1819, 012022.	0.3	2
67	Neodymium-Doped Multi-Component Borate/Phosphate Glasses for NIR Solid-State Material Applications. Integrated Ferroelectrics, 2022, 224, 13-32.	0.3	2
68	The Radioluminescence Investigation of Lead Sodium Borate Glass Doped with Eu ³⁺ . Integrated Ferroelectrics, 2022, 224, 90-99.	0.3	2
69	Solid-state synthesis, characterizations and luminescent properties of EuBO3 phosphors with various Gd3+ concentrations for X-ray screen material application. Radiation Physics and Chemistry, 2022, 201, 110406.	1.4	2
70	Optical Properties of Eu[sup 3+] Doped Lead Borate Tellurite and Zinc Borate Tellurite Glasses. , 2011, , .		1
71	Thermal analysis, spectral characterization and refractive index studies of lithium doped PbO-ZnO-B2O3 glass. , 2012, , .		1
72	Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses. AIP Conference Proceedings, 2018, , .	0.3	1

#	Article	IF	CITATIONS
73	Effects on inter-substitution of SrO to Li2O in borate glass systems doped with Sm3+ ions. AlP Conference Proceedings, 2020, , .	0.3	1
74	Novel plaster waste glass for solid state lighting applications. Optical Materials, 2020, 109, 110180.	1.7	1
75	Spectroscopic Characterization and CIE Coordinate of Pr ³⁺ lons Doped Pottasium Aluminum Gadolinium Phosphate Glasses. Integrated Ferroelectrics, 2022, 224, 52-61.	0.3	1
76	White Emission from Li ₂ O-BaO-Bi ₂ O ₃ -P ₂ O ₅ Glass Doped with Dy ³⁺ for Optical Condensed Material Applications. Integrated Ferroelectrics, 2022, 223, 18-28.	0.3	1
77	Eu-Doped Gd ₂ MoB ₂ O ₉ Phosphors for Latent Fingerprints Detection. Integrated Ferroelectrics, 2022, 225, 160-172.	0.3	1
78	Optical Properties of Pb0-ZnO-P2O5 Glasses Doped With Samarium and Neodymium. , 2011, , .		0
79	Transport properties of PbO-P2O5-ZnO-Li2O glass system. , 2012, , .		Ο
80	Optical properties of Eu2O3 doped lead fluoroborate glass. , 2012, , .		0
81	Spectroscopic study of neodymium doped lead-bismuth-borate glasses. AIP Conference Proceedings, 2016, , .	0.3	Ο
82	Effect of Sodium Oxide and Sodium Fluoride in Gadolinium Phosphate Glasses Doped with Eu2O3 Content, Journal of Physics: Conference Series, 2020, 1428, 012029	0.3	0

Content. Journal of Physics: Conference Series, 2020, 1428, 012029.