
Ravichandran K

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041841/publications.pdf Version: 2024-02-01

ΡΑνισμανισμανι Κ

#	Article	IF	CITATIONS
1	Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests. Electrochimica Acta, 2005, 51, 247-256.	5.2	71
2	Formation of zinc–zinc phosphate composite coatings by cathodic electrochemical treatment. Surface and Coatings Technology, 2006, 200, 4117-4126.	4.8	67
3	Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: Characteristics, corrosion resistance and bioactivity. Journal of Alloys and Compounds, 2018, 745, 725-743.	5.5	56
4	Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell. Journal of Materials Science and Technology, 2022, 97, 134-146.	10.7	50
5	Formation and characteristics of zinc phosphate coatings obtained by electrochemical treatment: Cathodic vs. anodic. Progress in Organic Coatings, 2009, 65, 229-236.	3.9	46
6	A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications. ACS Applied Materials & Interfaces, 2015, 7, 17731-17747.	8.0	45
7	Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceramics International, 2021, 47, 5061-5070.	4.8	40
8	Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth. Materials Science and Engineering C, 2019, 96, 487-495.	7.3	39
9	Tailoring the morphological features of sol–gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Advances, 2019, 9, 6228-6240.	3.6	38
10	Synthesis and characterisation of novel Cu(<scp>ii</scp>)-anchored biopolymer complexes as reusable materials for the photocatalytic degradation of methylene blue. RSC Advances, 2020, 10, 18259-18279.	3.6	37
11	Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies. New Journal of Chemistry, 2019, 43, 18484-18494.	2.8	34
12	New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications. Materials Science and Engineering C, 2018, 92, 685-693.	7.3	32
13	Microwave-assisted green synthesis of multi-functional carbon quantum dots as efficient fluorescence sensor for ultra-trace level monitoring of ammonia in environmental water. Environmental Research, 2022, 206, 112589.	7.5	28
14	Novel pure α-, β-, and mixed-phase α/β-Bi2O3 photocatalysts for enhanced organic dye degradation under both visible light and solar irradiation. Environmental Research, 2022, 205, 112439.	7.5	27
15	Facile fabrication of phase transformed cerium (IV) doped hydroxyapatite for biomedical applications – A health care approach. Ceramics International, 2020, 46, 2510-2522.	4.8	25
16	A facile electrochemical approach for the deposition of iron–manganese phosphate composite coatings on aluminium. RSC Advances, 2015, 5, 988-1008.	3.6	22
17	Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Materials Technology, 2016, 31, 705-718.	3.0	22
18	Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell. Journal of Materials Science, 2021, 56, 10575-10596.	3.7	22

RAVICHANDRAN K

#	Article	IF	CITATIONS
19	Deposition of zincâ \in zinc phosphate composite coatings on steel by cathodic electrochemical treatment. Journal of Coatings Technology Research, 2014, 11, 431-442.	2.5	18
20	Protecting electrochemical degradation of pure iron using zinc phosphate coating for biodegradable implant applications. New Journal of Chemistry, 2018, 42, 18458-18468.	2.8	18
21	Microwave synthesis of hydroxyapatite encumbered with ascorbic acid intended for drug leaching studies. Materials Research Innovations, 2020, 24, 171-178.	2.3	18
22	Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings. Journal of Magnesium and Alloys, 2022, 10, 295-312.	11.9	17
23	Fabrication of nitrogen-rich graphitic carbon nitride/Cu2O (g-C3N4@Cu2O) composite and its enhanced photocatalytic activity for organic pollutants degradation. Journal of Materials Science: Materials in Electronics, 2020, 31, 2257-2268.	2.2	16
24	Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: characteristics, bioactivity, and antimicrobial behavior. Journal of the Australian Ceramic Society, 2019, 55, 953-967.	1.9	15
25	Development of a novel smart carrier for drug delivery: Ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium. Ceramics International, 2022, 48, 9579-9594.	4.8	15
26	Crystalline selenite substituted carbonated hydroxyapatite nanorods: Synthesis, characterization, evaluation of bioactivity and cytotoxicity. International Journal of Applied Ceramic Technology, 2017, 14, 68-76.	2.1	12
27	Improving the corrosion resistance and bioactivity of magnesium by a carbonate conversion-polycaprolactone duplex coating approach. New Journal of Chemistry, 2020, 44, 4772-4785.	2.8	12
28	Drug delivery and antimicrobial studies of chitosan-alginate based hydroxyapatite bioscaffolds formed by the Casein micelle assisted synthesis. Materials Chemistry and Physics, 2021, 272, 125019.	4.0	12
29	Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity. Journal of Sol-Gel Science and Technology, 2018, 86, 441-458.	2.4	8
30	Surfactant Assisted Hydroxyapatite Nanoparticles: Drug Loading and <i>In Vitro</i> Leaching Kinetics and Antimicrobial Properties. Journal of Nanoscience and Nanotechnology, 2019, 19, 7198-7204.	0.9	8
31	Influence of sonication on the physicochemical and biological characteristics of selenium-substituted hydroxyapatites. New Journal of Chemistry, 2020, 44, 17453-17464.	2.8	7
32	Nanoformulations of core–shell type hydroxyapatite-coated gum acacia with enhanced bioactivity and controlled drug delivery for biomedical applications. New Journal of Chemistry, 2020, 44, 7175-7185.	2.8	7
33	Drug delivery and in vitro biological effects of gum ghatti-modified hydroxyapatite nanoporous composites. Materials Chemistry and Physics, 2021, 263, 124385.	4.0	7
34	Docking and <i>in vitro</i> molecular biology studies of <i>p</i> -anisidine-appended 1-hydroxy-2-acetonapthanone Schiff base lanthanum(<scp>iii</scp>) complexes. RSC Advances, 2020, 10, 16457-16472.	3.6	6
35	Cathodic electrodeposition of zinc–zinc phosphate–calcium phosphate composite coatings on pure iron for biodegradable implant applications. New Journal of Chemistry, 2020, 44, 6475-6489.	2.8	5
36	Spectrophotometric analysis to monitor the corrosion behaviour of magnesium during immersion corrosion testing: A suitable alternative to pH measurement?. Corrosion Science, 2014, 89, 338-342.	6.6	4

#	Article	IF	CITATIONS
37	A Hydrothermal Synthesis of Graphene Quantum Dots Modified Carbon Paste Electrode as an Efficient Electro Sensor Towards L-Ascorbic Acid. Asian Journal of Chemistry, 2019, 31, 1362-1368.	0.3	0