
Emir Salas Sarduy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041777/publications.pdf Version: 2024-02-01

FMID SALAS SADDUV

#	Article	IF	CITATIONS
1	Tetracycline Derivatives Inhibit Plasmodial Cysteine Protease Falcipain-2 through Binding to a Distal Allosteric Site. Journal of Chemical Information and Modeling, 2022, 62, 159-175.	5.4	3
2	Screening and Identification of Metacaspase Inhibitors: Evaluation of Inhibition Mechanism and Trypanocidal Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1
3	In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2. Journal of Computer-Aided Molecular Design, 2021, 35, 1067-1079.	2.9	5
4	In silico Guided Drug Repurposing: Discovery of New Competitive and Non-competitive Inhibitors of Falcipain-2. Frontiers in Chemistry, 2019, 7, 534.	3.6	23
5	Potent and selective inhibitors for M32 metallocarboxypeptidases identified from high-throughput screening of anti-kinetoplastid chemical boxes. PLoS Neglected Tropical Diseases, 2019, 13, e0007560.	3.0	3
6	Evaluation of quinoxaline compounds as ligands of a site adjacent to S2 (AS2) of cruzain. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2197-2202.	2.2	8
7	Target-based Screening of the Chagas Box: Setting Up Enzymatic Assays to Discover Specific Inhibitors Across Bioactive Compounds. Current Medicinal Chemistry, 2019, 26, 6672-6686.	2.4	2
8	<scp>DNA</scp> â€damage inducible protein 1 is a conserved metacaspase substrate that is cleaved and further destabilized in yeast under specific metabolic conditions. FEBS Journal, 2018, 285, 1097-1110.	4.7	10
9	Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2911-2923.	2.4	6
10	Rational design and synthesis of affinity matrices based on proteases immobilized onto cellulose membranes. Preparative Biochemistry and Biotechnology, 2017, 47, 745-753.	1.9	4
11	Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates. Journal of Proteomics, 2017, 165, 75-92.	2.4	8
12	Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Scientific Reports, 2017, 7, 12073.	3.3	27
13	Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays. Marine Drugs, 2017, 15, 123.	4.6	7
14	Synthetic compounds from an <i>in house</i> library as inhibitors of falcipain-2 from <i>Plasmodium falciparum</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 299-307.	5.2	20
15	Computer-aided design of bromelain and papain covalent immobilization. Revista Colombiana De BiotecnologÃa, 2014, 16, 19.	0.2	3
16	Antiparasitic effect of a fraction enriched in tight-binding protease inhibitors isolated from the Caribbean coral Plexaura homomalla. Experimental Parasitology, 2013, 135, 611-622.	1.2	15
17	Efficient expression systems for cysteine proteases of malaria parasites. Bioengineered, 2013, 4, 107-114.	3.2	1
18	High-level expression of Falcipain-2 in Escherichia coli by codon optimization and auto-induction. Protein Expression and Purification, 2012, 83, 59-69.	1.3	20

#	Article	IF	CITATIONS
19	A heterogeneous enzymatic assay for quantification of Plasmepsin II activity and the evaluation of its inhibitors. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 833-840.	2.8	6
20	An immunoenzymatic solid-phase assay for quantitative determination of HIV-1 protease activity. Analytical Biochemistry, 2002, 307, 18-24.	2.4	23