
Ahmed H Ragab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removing the Oxamyl from Aqueous Solution by a Green Synthesized HTiO2@AC/SiO2 Nanocomposite: Combined Effects of Adsorption and Photocatalysis. Catalysts, 2022, 12, 163.	3.5	5
2	Rice Straw as Green Waste in a HTiO2@AC/SiO2 Nanocomposite Synthesized as an Adsorbent and Photocatalytic Material for Chlorpyrifos Removal from Aqueous Solution. Catalysts, 2022, 12, 714.	3.5	1
3	Equilibrium and Kinetic Study of Anionic and Cationic Pollutants Remediation by Limestone–Chitosan–Alginate Nanocomposite from Aqueous Solution. Molecules, 2021, 26, 2586.	3.8	6
4	Investigation the Effects of Green-Synthesized Copper Nanoparticles on the Performance of Activated Carbon-Chitosan-Alginate for the Removal of Cr(VI) from Aqueous Solution. Molecules, 2021, 26, 2617.	3.8	9
5	Enhanced Performance of Chitosan via a Novel Quaternary Magnetic Nanocomposite Chitosan/Grafted Halloysitenanotubes@ZnγFe3O4 for Uptake of Cr (III), Fe (III), and Mn (II) from Wastewater. Polymers, 2021, 13, 2714.	4.5	14
6	An Efficient Strategy for Enhancing the Adsorption of Antibiotics and Drugs from Aqueous Solutions Using an Effective Limestone-Activated Carbon–Alginate Nanocomposite. Molecules, 2021, 26, 5180.	3.8	12
7	Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study. Molecules, 2021, 26, 6016.	3.8	3
8	Enhanced Nanofiltration Process of Thin Film Composite Membrane Using Dodecyl Phenol Ethoxylate and Oleic Acid Ethoxylate for Oilfield Calcite Scale Control. Membranes, 2021, 11, 855.	3.0	4
9	Organic Pollutants Removal from Olive Mill Wastewater Using Electrocoagulation Process via Central Composite Design (CCD). Water (Switzerland), 2021, 13, 3522.	2.7	5
10	Synthesis and Characterization of Silica-Coated Oxyhydroxide Aluminum/Doped Polymer Nanocomposites: A Comparative Study and Its Application as a Sorbent. Molecules, 2020, 25, 1520.	3.8	9
11	Environmentally Friendly Mesoporous Nanocomposite Prepared from Al-Dross Waste with Remarkable Adsorption Ability for Toxic Anionic Dye. Journal of Chemistry, 2019, 2019, 1-14.	1.9	4
12	The Removal of Brilliant Green Dye from Aqueous Solution Using Nano Hydroxyapatite/Chitosan Composite as a Sorbent. Molecules, 2019, 24, 847.	3.8	79