Joseph W Golden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. Journal of Virology, 2022, 96, JVI0150421.	1.5	31
2	Hamsters Expressing Human Angiotensin-Converting Enzyme 2 Develop Severe Disease following Exposure to SARS-CoV-2. MBio, 2022, 13, e0290621.	1.8	17
3	The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathogens, 2022, 18, e1010485.	2.1	12
4	A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. Npj Vaccines, 2021, 6, 31.	2.9	25
5	Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. Journal of General Virology, 2021, 102, .	1.3	6
6	Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2-Infected Syrian Hamsters. Journal of Virology, 2020, 94, .	1.5	58
7	Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight, 2020, 5, .	2.3	186
8	Animal Models for Crimean-Congo Hemorrhagic Fever Human Disease. Viruses, 2019, 11, 590.	1.5	51
9	GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Science Advances, 2019, 5, eaaw9535.	4.7	56
10	Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathogens, 2019, 15, e1008050.	2.1	32
11	[18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus-Infected Mice. Molecular Imaging and Biology, 2018, 20, 275-283.	1.3	21
12	Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. Journal of Virology, 2018, 92, .	1.5	41
13	African and Asian Zika Virus Isolates Display Phenotypic Differences Both In Vitro and In Vivo. American Journal of Tropical Medicine and Hygiene, 2018, 98, 432-444.	0.6	65
14	Human polyclonal antibodies produced in transchromosomal cattle prevent lethal Zika virus infection and testicular atrophy in mice. Antiviral Research, 2017, 146, 164-173.	1.9	22
15	An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Scientific Reports, 2017, 7, 4679.	1.6	21
16	Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon. PLoS Neglected Tropical Diseases, 2017, 11, e0005296.	1.3	103
17	A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Neglected Tropical Diseases, 2017, 11, e0005908.	1.3	76
18	Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever. Journal of Virology, 2016, 90, 3515-3529.	1.5	21

Joseph W Golden

#	Article	IF	CITATIONS
19	Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. BioMed Research International, 2015, 2015, 1-31.	0.9	42
20	Impact of Host Proteases on Reovirus Infection in the Respiratory Tract. Journal of Virology, 2012, 86, 1238-1243.	1.5	27
21	Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates. PLoS ONE, 2012, 7, e42353.	1.1	36
22	Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease. Virology Journal, 2011, 8, 441.	1.4	23
23	The strategic use of novel smallpox vaccines in the post-eradication world. Expert Review of Vaccines, 2011, 10, 1021-1035.	2.0	18
24	Evaluating the Orthopoxvirus Type I Interferon-Binding Molecule as a Vaccine Target in the Vaccinia Virus Intranasal Murine Challenge Model. Vaccine Journal, 2010, 17, 1656-1665.	3.2	8
25	Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine, 2009, 28, 494-511.	1.7	61
26	Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology, 2008, 377, 19-29.	1.1	35
27	Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine, 2008, 26, 3507-3515.	1.7	32
28	Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine, 2007, 25, 1814-1823.	1.7	153
29	Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein. Virology, 2007, 368, 331-341.	1.1	47
30	Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells. Virology Journal, 2005, 2, 48.	1.4	15
31	Cathepsin S Supports Acid-independent Infection by Some Reoviruses. Journal of Biological Chemistry, 2004, 279, 8547-8557.	1.6	47
32	Addition of Exogenous Protease Facilitates Reovirus Infection in Many Restrictive Cells. Journal of Virology, 2002, 76, 7430-7443.	1.5	63
33	Role of Flagella in Host Cell Invasion by Burkholderia cepacia. Infection and Immunity, 2002, 70, 1799-1806.	1.0	101