List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041516/publications.pdf Version: 2024-02-01

ALAN N ENCELMAN

#	Article	IF	CITATIONS
1	Structure and function of retroviral integrase. Nature Reviews Microbiology, 2022, 20, 20-34.	13.6	52
2	Spatial and Genomic Correlates of HIV-1 Integration Site Targeting. Cells, 2022, 11, 655.	1.8	11
3	Multimodal Functionalities of HIV-1 Integrase. Viruses, 2022, 14, 926.	1.5	14
4	Multivalent interactions essential for lentiviral integrase function. Nature Communications, 2022, 13, 2416.	5.8	12
5	Genome-wide CRISPR/Cas9 transcriptional activation screen identifies a histone acetyltransferase inhibitor complex as a regulator of HIV-1 integration. Nucleic Acids Research, 2022, 50, 6687-6701.	6.5	6
6	Closeâ€up: HIV/SIV intasome structures shed new light on integrase inhibitor binding and viral escape mechanisms. FEBS Journal, 2021, 288, 427-433.	2.2	9
7	Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Research, 2021, 49, 621-635.	6.5	17
8	HIV Capsid and Integration Targeting. Viruses, 2021, 13, 125.	1.5	31
9	D614G and SARS-CoV-2 replication fitness. Signal Transduction and Targeted Therapy, 2021, 6, 99.	7.1	1
10	Cryo-EM structure of the Rous sarcoma virus octameric cleaved synaptic complex intasome. Communications Biology, 2021, 4, 330.	2.0	12
11	Cytoplasmic CPSF6 Regulates HIV-1 Capsid Trafficking and Infection in a Cyclophilin A-Dependent Manner. MBio, 2021, 12, .	1.8	28
12	Long-Acting Cabotegravir for HIV/AIDS Prophylaxis. Biochemistry, 2021, 60, 1731-1740.	1.2	12
13	Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal. MBio, 2021, 12, e0109821.	1.8	2
14	You can keep your coat on. ELife, 2021, 10, .	2.8	0
15	rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration <i>in vitro</i> and <i>inÂvivo</i> . Nucleic Acids Research, 2021, 49, 7330-7346.	6.5	15
16	A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site. PLoS Pathogens, 2021, 17, e1009671.	2.1	16
17	Intra- and extra-cellular environments contribute to the fate of HIV-1 infection. Cell Reports, 2021, 36, 109622.	2.9	11
18	Deep-learning in situ classification of HIV-1 virion morphology. Computational and Structural Biotechnology Journal, 2021, 19, 5688-5700.	1.9	5

#	Article	IF	CITATIONS
19	HIV-1 integrase binding to genomic RNA 5′-UTR induces local structural changes in vitro and in virio. Retrovirology, 2021, 18, 37.	0.9	6
20	Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science, 2020, 370, 360-364.	6.0	114
21	HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nature Communications, 2020, 11, 3505.	5.8	93
22	Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nature Structural and Molecular Biology, 2020, 27, 855-862.	3.6	43
23	Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. Journal of Virology, 2020, 95, .	1.5	12
24	Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature, 2020, 585, 261-267.	13.7	245
25	The HIV-1 capsid-binding host factor CPSF6 is post-transcriptionally regulated by the cellular microRNA miR-125b. Journal of Biological Chemistry, 2020, 295, 5081-5094.	1.6	14
26	A Peptide Derived from Lens Epithelium–Derived Growth Factor Stimulates HIV-1 DNA Integration and Facilitates Intasome Structural Studies. Journal of Molecular Biology, 2020, 432, 2055-2066.	2.0	11
27	Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science, 2020, 367, 806-810.	6.0	73
28	CPSF6-Dependent Targeting of Speckle-Associated Domains Distinguishes Primate from Nonprimate Lentiviral Integration. MBio, 2020, 11, .	1.8	31
29	Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis. PLoS Biology, 2020, 18, e3001015.	2.6	42
30	Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis. ELife, 2020, 9, .	2.8	35
31	Dominant Negative MA-CA Fusion Protein Is Incorporated into HIV-1 Cores and Inhibits Nuclear Entry of Viral Preintegration Complexes. Journal of Virology, 2019, 93, .	1.5	13
32	Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. Journal of Biological Chemistry, 2019, 294, 15137-15157.	1.6	57
33	A HTRF based competitive binding assay for screening specific inhibitors of HIV-1 capsid assembly targeting the C-Terminal domain of capsid. Antiviral Research, 2019, 169, 104544.	1.9	9
34	Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Research, 2019, 47, 4663-4683.	6.5	35
35	Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathogens, 2019, 15, e1008154.	2.1	10
36	Capsid-CPSF6 interaction: Master regulator of nuclear HIV-1 positioning and integration. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 39-45.	1.8	12

#	Article	IF	CITATIONS
37	HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors. ELife, 2019, 8, .	2.8	41
38	LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. Blood, 2018, 131, blood-2017-05-786962.	0.6	32
39	Cellular and molecular mechanisms of HIV-1 integration targeting. Cellular and Molecular Life Sciences, 2018, 75, 2491-2507.	2.4	53
40	Molecular Mechanisms for CFIm-Mediated Regulation of mRNA Alternative Polyadenylation. Molecular Cell, 2018, 69, 62-74.e4.	4.5	160
41	Virus–Host Interactions in Retrovirus Integration. , 2018, , 163-198.		8
42	Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. Cell Host and Microbe, 2018, 24, 392-404.e8.	5.1	141
43	A supramolecular assembly mediates lentiviral DNA integration. Science, 2017, 355, 93-95.	6.0	96
44	Inhibition of HIV-1 Maturation via Small-Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein. Journal of Virology, 2017, 91, .	1.5	24
45	Structural basis for spumavirus GAG tethering to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5509-5514.	3.3	45
46	Retroviral intasomes arising. Current Opinion in Structural Biology, 2017, 47, 23-29.	2.6	46
47	Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545, 432-438.	13.7	395
48	Capsid-Dependent Host Factors in HIV-1 Infection. Trends in Microbiology, 2017, 25, 741-755.	3.5	101
49	Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing. Journal of Biological Chemistry, 2017, 292, 19814-19825.	1.6	31
50	CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Science Advances, 2017, 3, e1701264.	4.7	47
51	Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nature Communications, 2017, 8, 1882.	5.8	50
52	Retroviral integrase protein and intasome nucleoprotein complex structures. World Journal of Biological Chemistry, 2017, 8, 32.	1.7	16
53	Establishment and Reversal of HIV-1 Latency in Naive and Central Memory CD4 ⁺ T Cells <i>In Vitro</i> . Journal of Virology, 2016, 90, 8059-8073.	1.5	37
54	Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Reports, 2016, 17, 3178-3192.	2.9	25

#	Article	IF	CITATIONS
55	Retroviral DNA Integration. Chemical Reviews, 2016, 116, 12730-12757.	23.0	177
56	Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. Journal of Virology, 2016, 90, 5808-5823.	1.5	72
57	A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain. Journal of Biological Chemistry, 2016, 291, 23569-23577.	1.6	20
58	Allosteric HIVâ€1 integrase inhibitors promote aberrant protein multimerization by directly mediating interâ€subunit interactions: Structural and thermodynamic modeling studies. Protein Science, 2016, 25, 1911-1917.	3.1	30
59	Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites. Journal of Visualized Experiments, 2016, , .	0.2	36
60	Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage <i>In Vivo</i> . Journal of Virology, 2016, 90, 6918-6935.	1.5	50
61	The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes. Journal of Biological Chemistry, 2016, 291, 11809-11819.	1.6	49
62	Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature, 2016, 530, 358-361.	13.7	88
63	A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1054-63.	3.3	197
64	The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency. ACS Chemical Biology, 2016, 11, 1313-1321.	1.6	29
65	Sites of retroviral DNA integration: From basic research to clinical applications. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 26-42.	2.3	24
66	Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathogens, 2016, 12, e1005860.	2.1	9
67	Key determinants of target DNA recognition by retroviral intasomes. Retrovirology, 2015, 12, 39.	0.9	56
68	Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice. PLoS ONE, 2015, 10, e0137797.	1.1	9
69	Exploiting the Susceptibility of HIV-1 Nucleocapsid Protein to Radiation Damage in Tomo-Bubblegram Imaging. Microscopy and Microanalysis, 2015, 21, 545-546.	0.2	1
70	Structural basis for retroviral integration into nucleosomes. Nature, 2015, 523, 366-369.	13.7	133
71	Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature, 2015, 519, 193-198.	13.7	295
72	Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation. Journal of Virology, 2015, 89, 9765-9780.	1.5	91

#	Article	IF	CITATIONS
73	Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2015, 527, 535-538.	13.7	169
74	Molecular mechanisms of retroviral integration site selection. Nucleic Acids Research, 2014, 42, 10209-10225.	6.5	107
75	Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology, 2014, 11, 90.	0.9	89
76	The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology, 2014, 11, 100.	0.9	39
77	Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Research, 2014, 42, 5164-5176.	6.5	62
78	Structural basis for nuclear import of splicing factors by human Transportin 3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2728-2733.	3.3	124
79	Structural Insight into HIV-1 Restriction by MxB. Cell Host and Microbe, 2014, 16, 627-638.	5.1	106
80	Efficient transduction of LEDGF/p75 mutant cells by complementary gain-of-function HIV-1 integrase mutant viruses. Molecular Therapy - Methods and Clinical Development, 2014, 1, 2.	1.8	13
81	Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiology Spectrum, 2014, 2, .	1.2	50
82	Engineered Hyperactive Integrase for Concerted HIV-1 DNA Integration. PLoS ONE, 2014, 9, e105078.	1.1	34
83	Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiology Spectrum, 2014, 2, 1-22.	1.2	205
84	Allosteric inhibition of HIV-1 integrase activity. Current Opinion in Chemical Biology, 2013, 17, 339-345.	2.8	68
85	Nucleoporin NUP153 Phenylalanine-Glycine Motifs Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral Infectivity. PLoS Pathogens, 2013, 9, e1003693.	2.1	223
86	Viral and Cellular Requirements for the Nuclear Entry of Retroviral Preintegration Nucleoprotein Complexes. Viruses, 2013, 5, 2483-2511.	1.5	118
87	Differential Effects of Human Immunodeficiency Virus Type 1 Capsid and Cellular Factors Nucleoporin 153 and LEDGF/p75 on the Efficiency and Specificity of Viral DNA Integration. Journal of Virology, 2013, 87, 648-658.	1.5	108
88	Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8690-8695.	3.3	178
89	The A128T Resistance Mutation Reveals Aberrant Protein Multimerization as the Primary Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. Journal of Biological Chemistry, 2013, 288, 15813-15820.	1.6	85
90	Biochemical Characterization of Novel Retroviral Integrase Proteins. PLoS ONE, 2013, 8, e76638.	1.1	19

#	Article	IF	CITATIONS
91	HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Research, 2012, 40, 11518-11530.	6.5	86
92	Human Immunodeficiency Virus Type 1 Capsid Mutation N74D Alters Cyclophilin A Dependence and Impairs Macrophage Infection. Journal of Virology, 2012, 86, 4708-4714.	1.5	84
93	Correlation of Recombinant Integrase Activity and Functional Preintegration Complex Formation during Acute Infection by Replication-Defective Integrase Mutant Human Immunodeficiency Virus. Journal of Virology, 2012, 86, 3861-3879.	1.5	20
94	Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. Journal of Biological Chemistry, 2012, 287, 16801-16811.	1.6	167
95	The structural biology of HIV-1: mechanistic and therapeutic insights. Nature Reviews Microbiology, 2012, 10, 279-290.	13.6	272
96	Differential Sensitivities of Retroviruses to Integrase Strand Transfer Inhibitors. Journal of Virology, 2011, 85, 3677-3682.	1.5	35
97	The Requirement for Nucleoporin NUP153 during Human Immunodeficiency Virus Type 1 Infection Is Determined by the Viral Capsid. Journal of Virology, 2011, 85, 7818-7827.	1.5	189
98	Retroviral intasome assembly and inhibition of DNA strand transfer. Nature, 2010, 464, 232-236.	13.7	620
99	Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15910-15915.	3.3	184
100	Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proceedings of the United States of America, 2010, 107, 3135-3140.	3.3	129
101	The Requirement for Cellular Transportin 3 (TNPO3 or TRN-SR2) during Infection Maps to Human Immunodeficiency Virus Type 1 Capsid and Not Integrase. Journal of Virology, 2010, 84, 397-406.	1.5	167
102	Flexible Use of Nuclear Import Pathways by HIV-1. Cell Host and Microbe, 2010, 7, 221-233.	5.1	396
103	A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75. PLoS Pathogens, 2009, 5, e1000259.	2.1	139
104	Structural Basis for Functional Tetramerization of Lentiviral Integrase. PLoS Pathogens, 2009, 5, e1000515.	2.1	113
105	The SET Complex Acts as a Barrier to Autointegration of HIV-1. PLoS Pathogens, 2009, 5, e1000327.	2.1	82
106	Quantitative analysis of HIV-1 preintegration complexes. Methods, 2009, 47, 283-290.	1.9	22
107	Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase. Retrovirology, 2009, 6, 94.	0.9	37
108	Identification and Characterization of PWWP Domain Residues Critical for LEDGF/p75 Chromatin Binding and Human Immunodeficiency Virus Type 1 Infectivity. Journal of Virology, 2008, 82, 11555-11567.	1.5	75

#	Article	IF	CITATIONS
109	Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein. Journal of Biological Chemistry, 2008, 283, 31802-31812.	1.6	115
110	The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication. PLoS Pathogens, 2008, 4, e1000046.	2.1	199
111	Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen. Science, 2008, 319, 921-926.	6.0	1,310
112	Isolation and Analysis of HIV-1 Preintegration Complexes. Methods in Molecular Biology, 2008, 485, 135-149.	0.4	16
113	LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes and Development, 2007, 21, 1767-1778.	2.7	408
114	AIDS/HIV: A Reversal of Fortune in HIV-1 Integration. Science, 2007, 316, 1855-1857.	6.0	8
115	Wild-Type Levels of Human Immunodeficiency Virus Type 1 Infectivity in the Absence of Cellular Emerin Protein. Journal of Virology, 2007, 81, 166-172.	1.5	61
116	Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness. Virology, 2007, 357, 79-90.	1.1	65
117	Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology, 2006, 346, 415-426.	1.1	100
118	A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Research, 2006, 34, 1653-1665.	6.5	166
119	Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nature Structural and Molecular Biology, 2005, 12, 526-532.	3.6	221
120	Lys-34, Dispensable for Integrase Catalysis, Is Required for Preintegration Complex Function and Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2005, 79, 12584-12591.	1.5	38
121	Genetic Analyses of Conserved Residues in the Carboxyl-Terminal Domain of Human Immunodeficiency Virus Type 1 Integrase. Journal of Virology, 2005, 79, 10356-10368.	1.5	76
122	Genetic Analyses of DNA-Binding Mutants in the Catalytic Core Domain of Human Immunodeficiency Virus Type 1 Integrase. Journal of Virology, 2005, 79, 2493-2505.	1.5	80
123	The ups and downs of gene expression and retroviral DNA integration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1275-1276.	3.3	30
124	Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17308-17313.	3.3	379
125	Identification and Characterization of a Functional Nuclear Localization Signal in the HIV-1 Integrase Interactor LEDGF/p75. Journal of Biological Chemistry, 2004, 279, 33421-33429.	1.6	86
126	Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2004, 78, 12735-12746.	1.5	115

#	Article	IF	CITATIONS
127	ldentification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase. Journal of Biological Chemistry, 2004, 279, 48883-48892.	1.6	248
128	Intracellular transport of human immunodeficiency virus type 1 integrase. Journal of Cell Science, 2003, 116, 4401-4408.	1.2	60
129	The Barrier-to-Autointegration Factor Is a Component of Functional Human Immunodeficiency Virus Type 1 Preintegration Complexes. Journal of Virology, 2003, 77, 5030-5036.	1.5	129
130	Nuclear Localization of Human Immunodeficiency Virus Type 1 Preintegration Complexes (PICs): V165A and R166A Are Pleiotropic Integrase Mutants Primarily Defective for Integration, Not PIC Nuclear Import. Journal of Virology, 2002, 76, 10598-10607.	1.5	91
131	Wild-Type Levels of Nuclear Localization and Human Immunodeficiency Virus Type 1 Replication in the Absence of the Central DNA Flap. Journal of Virology, 2002, 76, 12078-12086.	1.5	87
132	Human Immunodeficiency Virus Type 1 Replication in the Absence of Integrase-Mediated DNA Recombination: Definition of Permissive and Nonpermissive T-Cell Lines. Journal of Virology, 2001, 75, 7944-7955.	1.5	103
133	Characterization of a Replication-Defective Human Immunodeficiency Virus Type 1 att Site Mutant That Is Blocked after the 3′ Processing Step of Retroviral Integration. Journal of Virology, 2000, 74, 8188-8193.	1.5	17
134	Multiple Integrase Functions Are Required to Form the Native Structure of the Human Immunodeficiency Virus Type I Intasome. Journal of Biological Chemistry, 1999, 274, 17358-17364.	1.6	96
135	In Vivo Analysis of Retroviral Integrase Structure and Function. Advances in Virus Research, 1999, 52, 411-426.	0.9	155
136	A Soluble Active Mutant of HIV-1 Integrase. Journal of Biological Chemistry, 1996, 271, 7712-7718.	1.6	261
137	Solution Structure of the DNA Binding Domain of HIV-1 Integrase. Biochemistry, 1995, 34, 9826-9833.	1.2	321
138	Most of the avian genome appears available for retroviral DNA integration. BioEssays, 1994, 16, 797-799.	1.2	11
139	HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer. Cell, 1991, 67, 1211-1221.	13.5	656