Haoran Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of Spherical Quantum Well Down Converters in Solid State Lighting. ACS Applied Materials & Interfaces, 2021, 13, 12191-12197.	8.0	6
2	Precursor reaction kinetics control compositional grading and size of CdSe _{1â^x} S _x nanocrystal heterostructures. Chemical Science, 2019, 10, 6539-6552.	7.4	18
3	Design Rules for One-Step Seeded Growth of Nanocrystals: Threading the Needle between Secondary Nucleation and Ripening. Chemistry of Materials, 2019, 31, 4173-4183.	6.7	21
4	Charge Transport Modulation in PbSe Nanocrystal Solids by Au _{<i>x</i>} Ag _{1–<i>x</i>} Nanoparticle Doping. ACS Nano, 2018, 12, 9091-9100.	14.6	20
5	Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters, 2017, 17, 1387-1394.	9.1	40
6	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology, 2017, 12, 228-232.	31.5	75
7	Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking. Nano Letters, 2015, 15, 1349-1355.	9.1	118
8	Thermoelectric Properties of Solution Synthesized Nanostructured Materials. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 247-266.	6.8	23
9	The Effects of the Size and the Doping Concentration on the Power Factor of n-type Lead Telluride Nanocrystals for Thermoelectric Energy Conversion. Nano Letters, 2014, 14, 1153-1157.	9.1	34
10	Large-scale solution-phase production of Bi2Te3 and PbTe nanowires using Te nanowire templates. Nanoscale, 2014, 6, 7872.	5.6	32
11	Binder-free rice husk-based silicon–graphene composite as energy efficient Li-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 13437-13441.	10.3	109
12	Thermoelectric Properties of Silver Telluride–Bismuth Telluride Nanowire Heterostructure Synthesized by Site-Selective Conversion. Chemistry of Materials, 2014, 26, 3322-3327.	6.7	51
13	Environmentally Benign Synthesis of Ultrathin Metal Telluride Nanowires. Journal of the American Chemical Society, 2014, 136, 10242-10245.	13.7	65
14	Composition Modulation of Ag ₂ Te Nanowires for Tunable Electrical and Thermal Properties. Nano Letters, 2014, 14, 5398-5404.	9.1	80
15	Structure and Thermoelectric Properties of Spark Plasma Sintered Ultrathin PbTe Nanowires. Nano Letters, 2014, 14, 3466-3473.	9.1	47
16	Synthesis and investigation of thermoelectric and electrochemical properties of porous Ca9Co12O28 nanowires. Journal of Materials Chemistry A, 2013, 1, 11901.	10.3	32
17	Synthesis and Thermoelectric Properties of Compositional-Modulated Lead Telluride–Bismuth Telluride Nanowire Heterostructures. Nano Letters, 2013, 13, 2058-2063.	9.1	105
18	Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Applied Physics Letters, 2012, 101, .	3.3	70

HAORAN YANG

#	Article	IF	CITATIONS
19	Flexible Nanocrystal-Coated Glass Fibers for High-Performance Thermoelectric Energy Harvesting. Nano Letters, 2012, 12, 2140-2145.	9.1	83
20	Rational Synthesis of Ultrathin n-Type Bi ₂ Te ₃ Nanowires with Enhanced Thermoelectric Properties. Nano Letters, 2012, 12, 56-60.	9.1	276
21	Design Principle of Telluride-Based Nanowire Heterostructures for Potential Thermoelectric Applications. Nano Letters, 2012, 12, 3627-3633.	9.1	117
22	Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting. Nano Letters, 2012, 12, 540-545.	9.1	206
23	Nanostructured thermoelectric: Opportunities and challenges. Nano Energy, 2012, 1, 651-653.	16.0	22
24	Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment. Nanoscale, 2011, 3, 3555.	5.6	66
25	Semiconductor nanostructure-based photovoltaic solar cells. Nanoscale, 2011, 3, 2430.	5.6	78