List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704137/publications.pdf Version: 2024-02-01

RIHRIN LI

#	Article	IF	CITATIONS
1	Emerging investigator series: long-term exposure of amorphous silica nanoparticles disrupts the lysosomal and cholesterol homeostasis in macrophages. Environmental Science: Nano, 2022, 9, 105-117.	2.2	3
2	Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death and Disease, 2022, 13, 40.	2.7	61
3	Engineering catalytic dephosphorylation reaction for endotoxin inactivation. Nano Today, 2022, 44, 101456.	6.2	14
4	The interfacial interactions of nanomaterials with human serum albumin. Analytical and Bioanalytical Chemistry, 2022, 414, 4677-4684.	1.9	5
5	Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS Nano, 2022, 16, 7674-7688.	7.3	25
6	Nano-enabled photosynthesis in tumours to activate lipid peroxidation for overcoming cancer resistances. Biomaterials, 2022, 285, 121561.	5.7	32
7	Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment. Environment International, 2022, 164, 107258.	4.8	10
8	Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13, 2266-2285.	2.8	88
9	Biotransformation of rare earth oxide nanoparticles eliciting microbiota imbalance. Particle and Fibre Toxicology, 2021, 18, 17.	2.8	14
10	Editing flagellin derivatives for exploration of potent radioprotective agents. European Journal of Pharmacology, 2021, 907, 174259.	1.7	0
11	Twoâ€Đimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie - International Edition, 2020, 59, 3618-3623.	7.2	58
12	Twoâ€Đimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie, 2020, 132, 3647-3652.	1.6	8
13	Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nature Communications, 2020, 11, 3484.	5.8	90
14	Engineering the Protein Corona Structure on Gold Nanoclusters Enables Redâ€Shifted Emissions in the Second Nearâ€infrared Window for Gastrointestinal Imaging. Angewandte Chemie - International Edition, 2020, 59, 22431-22435.	7.2	78
15	Engineering the Protein Corona Structure on Gold Nanoclusters Enables Redâ€Shifted Emissions in the Second Nearâ€infrared Window for Gastrointestinal Imaging. Angewandte Chemie, 2020, 132, 22617-22621.	1.6	52
16	Engineering Fe–N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. Journal of the American Chemical Society, 2020, 142, 19602-19610.	6.6	59
17	Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small, 2020, 16, e1907663.	5.2	58
18	Quantitative Structure–Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles. Environmental Health Perspectives, 2020, 128, 67010.	2.8	58

#	Article	IF	CITATIONS
19	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	7.3	84
20	Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102037.	1.7	11
21	Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 8443-8450.	4.0	165
22	Detection of nanocarrier potentiation on drug induced phospholipidosis in cultured cells and primary hepatocyte spheroids by high content imaging and analysis. Toxicology and Applied Pharmacology, 2018, 348, 54-66.	1.3	11
23	Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Science Bulletin, 2018, 63, 133-142.	4.3	108
24	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano, 2018, 12, 1390-1402.	7.3	221
25	The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology, 2018, 12, 586-601.	1.6	40
26	Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nature Communications, 2018, 9, 4416.	5.8	61
27	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	5.2	21
28	Multihierarchically Profiling the Biological Effects of Various Metal-Based Nanoparticles in Macrophages under Low Exposure Doses. ACS Sustainable Chemistry and Engineering, 2018, 6, 10374-10384.	3.2	16
29	Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds. Frontiers in Chemistry, 2018, 6, 192.	1.8	54
30	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	7.3	19
31	Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portalâ€ofâ€Entry. Small, 2017, 13, 1603830.	5.2	23
32	Carbon Nanotubes: Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portalâ€ofâ€Entry (Small 15/2017). Small, 2017, 13, .	5.2	1
33	Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Particle and Fibre Toxicology, 2017, 14, 13.	2.8	61
34	Safe-by-Design CuO Nanoparticles <i>via</i> Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano, 2017, 11, 501-515.	7.3	107
35	Determining the Cytotoxicity of Rare Earth Element Nanoparticles in Macrophages and the Involvement of Membrane Damage. Environmental Science & Technology, 2017, 51, 13938-13948.	4.6	30
36	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and <i>E. coli</i> . ACS Nano, 2016, 10, 6008-6019.	7.3	49

#	Article	IF	CITATIONS
37	Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury. ACS Nano, 2016, 10, 7675-7688.	7.3	41
38	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	7.3	58
39	Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano, 2016, 10, 10966-10980.	7.3	172
40	Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. Nanoscale, 2016, 8, 18070-18086.	2.8	23
41	Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Scientific Reports, 2016, 6, 36490.	1.6	26
42	Nano LC-MS Based Proteomic Analysis as a Predicting Approach to Study Cellular Responses of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 2350-2359.	0.9	2
43	Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Particle and Fibre Toxicology, 2015, 13, 42.	2.8	26
44	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	5.2	105
45	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	7.3	107
46	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small, 2015, 11, 2087-2097.	5.2	149
47	Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating. ACS Nano, 2015, 9, 3293-3306.	7.3	130
48	Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. ACS Nano, 2015, 9, 9357-9372.	7.3	108
49	Cu Nanoparticles Have Different Impacts in <i>Escherichia coli</i> and <i>Lactobacillus brevis</i> than Their Microsized and Ionic Analogues. ACS Nano, 2015, 9, 7215-7225.	7.3	120
50	Implications of the Differential Toxicological Effects of Ill–V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries. ACS Nano, 2015, 9, 12011-12025.	7.3	15
51	<i>In vivo</i> detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging. Nanotechnology, 2014, 25, 495102.	1.3	14
52	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	5.2	242
53	PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co ₃ O ₄ <i>p</i> -Type Semiconductor in Cells and the Lung. Journal of the American Chemical Society, 2014, 136, 6406-6420.	6.6	136
54	Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano, 2014, 8, 1771-1783.	7.3	212

#	Article	IF	CITATIONS
55	Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1Î ² Producing Inflammasome. ACS Nano, 2014, 8, 10280-10292.	7.3	142
56	Engineering an Effective Immune Adjuvant by Designed Control of Shape and Crystallinity of Aluminum Oxyhydroxide Nanoparticles. ACS Nano, 2013, 7, 10834-10849.	7.3	192
57	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	7.3	265
58	NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small, 2013, 9, 1595-1607.	5.2	166
59	Predictive toxicological paradigm and high throughput approach for toxicity screening of engineered nanomaterials. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 4.	0.1	9
60	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	4.5	159
61	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	6.6	372
62	Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C60: experiment and modeling. Soft Matter, 2012, 8, 2915.	1.2	47
63	Size-Selective Enrichment of N-Linked Glycans Using Highly Ordered Mesoporous Carbon Material and Detection by MALDI-TOF MS. Analytical Chemistry, 2011, 83, 7721-7728.	3.2	72
64	A beadâ€based approach for largeâ€scale identification of in vitro kinase substrates. Proteomics, 2011, 11, 4632-4637.	1.3	18
65	Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon, 2011, 49, 1797-1805.	5.4	135
66	Preparation of polyamine-functionalized copper specific adsorbents for selective adsorption of copper. Colloids and Surfaces B: Biointerfaces, 2010, 78, 222-228.	2.5	16
67	The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine for capillary electrochromatography separation. Journal of Chromatography A, 2010, 1217, 4389-4394.	1.8	37
68	P-Glycoprotein Antibody Functionalized Carbon Nanotube Overcomes the Multidrug Resistance of Human Leukemia Cells. ACS Nano, 2010, 4, 1399-1408.	7.3	234
69	Polyhedral Oligomeric Silsesquioxane as a Cross-linker for Preparation of Inorganicâ ``Organic Hybrid Monolithic Columns. Analytical Chemistry, 2010, 82, 5447-5454.	3.2	125
70	Carbon Nanotubes as Intracellular Carriers for Multidrug Resistant Cells Studied by Capillary Electrophoresis–Laser–Induced Fluorescence. Methods in Molecular Biology, 2010, 625, 153-168.	0.4	7
71	MEKCâ€LIF analysis of rhodamine123 delivered by carbon nanotubes in K562 cells. Electrophoresis, 2009, 30, 1906-1912.	1.3	10