
Myrthe Karianne Sophie Hol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of More Than 1,000 Implanted Percutaneous Bone Conduction Devices. Otology and Neurotology, 2012, 33, 192-198.	1.3	134
2	Bone-Anchored Hearing Aids in Unilateral Inner Ear Deafness: An Evaluation of Audiometric and Patient Outcome Measurements. Otology and Neurotology, 2005, 26, 999-1006.	1.3	133
3	Clinical Outcome of the Simplified Surgical Technique for BAHA Implantation. Otology and Neurotology, 2008, 29, 1100-1108.	1.3	103
4	Pilot study on the effectiveness of the conventional CROS, the transcranial CROS and the BAHA transcranial CROS in adults with unilateral inner ear deafness. European Archives of Oto-Rhino-Laryngology, 2010, 267, 889-896.	1.6	97
5	Comparison Between a New Implantable Transcutaneous Bone Conductor and Percutaneous Bone-Conduction Hearing Implant. Otology and Neurotology, 2013, 34, 1071-1075.	1.3	95
6	The BAHA Softband. International Journal of Pediatric Otorhinolaryngology, 2005, 69, 973-980.	1.0	74
7	The Baha Softband. International Journal of Pediatric Otorhinolaryngology, 2008, 72, 1455-1459.	1.0	74
8	Bone-Anchored Hearing Aids in Patients with Acquired and Congenital Unilateral Inner Ear Deafness (Baha CROS): Clinical Evaluation of 56 Cases. Annals of Otology, Rhinology and Laryngology, 2010, 119, 447-454.	1.1	74
9	Single-sided deafness and directional hearing: contribution of spectral cues and high-frequency hearing loss in the hearing ear. Frontiers in Neuroscience, 2014, 8, 188.	2.8	47
10	Sound-localization performance of patients with single-sided deafness is not improved when listening with a bone-conduction device. Hearing Research, 2019, 372, 62-68.	2.0	42
11	Long-term Results of Bone-Anchored Hearing Aid Recipients Who Had Previously Used Air-Conduction Hearing Aids. JAMA Otolaryngology, 2005, 131, 321.	1.2	41
12	Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Sixâ€month results from a multicentre study. Clinical Otolaryngology, 2019, 44, 144-157.	1.2	41
13	Stability, survival, and tolerability of a 4.5-mm-wide bone-anchored hearing implant: 6-month data from a randomized controlled clinical trial. European Archives of Oto-Rhino-Laryngology, 2016, 273, 105-111.	1.6	40
14	An Overview of Different Systems: The Bone-Anchored Hearing Aid. Advances in Oto-Rhino-Laryngology, 2011, 71, 22-31.	1.6	35
15	Bilateral Bone-Anchored Hearing Aid Application in Children. Otology and Neurotology, 2010, 31, 615-623.	1.3	32
16	Benefit of Baha in the elderly with single-sided deafness. European Archives of Oto-Rhino-Laryngology, 2013, 270, 1285-1291.	1.6	28
17	Three-year experience with the Sophono in children with congenital conductive unilateral hearing loss: tolerability, audiometry, and sound localization compared to a bone-anchored hearing aid. European Archives of Oto-Rhino-Laryngology, 2016, 273, 3149-3156.	1.6	27
18	Loading of osseointegrated implants for bone conduction hearing at 3 weeks: 3-year stability, survival, and tolerability. European Archives of Oto-Rhino-Laryngology, 2016, 273, 1731-1737.	1.6	26

#	Article	IF	CITATIONS
19	The IPSâ€scale: A new soft tissue assessment scale for percutaneous and transcutaneous implants for bone conduction devices. Clinical Otolaryngology, 2017, 42, 1410-1413.	1.2	26
20	Rehabilitation of Patients with Conductive Hearing Loss and Moderate Mental Retardation by Means of a Bone-Anchored Hearing Aid. Otology and Neurotology, 2006, 27, 653-658.	1.3	22
21	Bilateral Bone Conduction Devices. Ear and Hearing, 2013, 34, 806-808.	2.1	21
22	A Retrospective Cohort Study on the Influence of Comorbidity on Soft Tissue Reactions, Revision Surgery, and Implant Loss in Bone-anchored Hearing Implants. Otology and Neurotology, 2015, 36, 812-818.	1.3	21
23	A new bone-anchored hearing implant: short-term retrospective data on implant survival and subjective benefit. European Archives of Oto-Rhino-Laryngology, 2013, 270, 3019-3025.	1.6	18
24	Auricular prostheses attached to osseointegrated implants: multidisciplinary work-up and clinical evaluation. European Archives of Oto-Rhino-Laryngology, 2019, 276, 1017-1027.	1.6	17
25	The efficacy of bone-anchored hearing implant surgery in children: A systematic review. International Journal of Pediatric Otorhinolaryngology, 2020, 132, 109906.	1.0	17
26	On the evaluation of a superpower sound processor for bone-anchored hearing. Clinical Otolaryngology, 2018, 43, 450-455.	1.2	16
27	Bone-anchored hearing implants in single-sided deafness patients: Long-term use and satisfaction by gender. Laryngoscope, 2015, 125, 2790-2795.	2.0	15
28	Titanium Fixtures for Bone-Conduction Devices and the Influence of Type 2 Diabetes Mellitus. Otology and Neurotology, 2012, 33, 1013-1017.	1.3	14
29	Percutaneous bone-anchored hearing implant surgery: linear incision technique with tissue preservation versus linear incision technique with tissue reduction. European Archives of Oto-Rhino-Laryngology, 2018, 275, 1737-1747.	1.6	13
30	Clinical results of Cochlearâ,"¢ BIA300 in children: Experience in two tertiary referral centers. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 2050-2055.	1.0	12
31	Percutaneous bone-anchored hearing implant surgery: dermatome versus linear incision technique. European Archives of Oto-Rhino-Laryngology, 2017, 274, 109-117.	1.6	11
32	Success rates in restoring hearing loss in patients with chronic otitis media: A systematic review. Laryngoscope Investigative Otolaryngology, 2021, 6, 522-530.	1.5	11
33	The Merits of Bilateral Application of Bone-Conduction Devices in Children With Bilateral Conductive Hearing Loss. Ear and Hearing, 2020, 41, 1327-1332.	2.1	10
34	Sound localization with bilateral bone conduction devices. European Archives of Oto-Rhino-Laryngology, 2022, 279, 1751-1764.	1.6	10
35	Evaluation of an abutmentâ€level superpower sound processor for boneâ€anchored hearing. Clinical Otolaryngology, 2018, 43, 1019-1024.	1.2	9
36	Results of a 2-Year Prospective Multicenter Study Evaluating Long-term Audiological and Clinical Outcomes of a Transcutaneous Implant for Bone Conduction Hearing. Otology and Neurotology, 2020, 41, 901-911.	1.3	7

#	Article	IF	CITATIONS
37	Clinical evaluation of a new laserâ€ablated titanium implant for boneâ€anchored hearing in 34 patients: 1â€year experience. Clinical Otolaryngology, 2018, 43, 761-764.	1.2	6
38	Subjective Fatigue in Children With Unaided and Aided Unilateral Hearing Loss. Laryngoscope, 2023, 133, 189-198.	2.0	6
39	Percutaneous bone-anchored hearing implant surgery: inside or outside the line of incision?. European Archives of Oto-Rhino-Laryngology, 2016, 273, 3713-3722.	1.6	5
40	Investigating Real-World Benefits of High-Frequency Gain in Bone-Anchored Users with Ecological Momentary Assessment and Real-Time Data Logging. Journal of Clinical Medicine, 2021, 10, 3923.	2.4	5
41	Economic Evaluation of Percutaneous Titanium Implants for Bone Conduction Hearing: A Cost-benefit Analysis. Otology and Neurotology, 2020, 41, 580-588.	1.3	4
42	Autologous versus prosthetic nasal and auricular reconstruction – patient, professional and layperson perceptions. International Journal of Oral and Maxillofacial Surgery, 2020, 49, 1271-1278.	1.5	4
43	Which device - when and why? The controversial role of bone conduction hearing devices in the rehabilitation of unilateral sensorineural hearing loss. Journal of Laryngology and Otology, 2016, 130, S121-S122.	0.8	3
44	A Clinical Evaluation of Minimally Invasive Ponto Surgery With a Modified Drill System for Inserting Bone-Anchored Hearing Implants. Otology and Neurotology, 2021, Publish Ahead of Print, 1192-1200.	1.3	3
45	Clinical characteristics and an evaluation of predictors for a favourable outcome of Mycobacterium abscessus otomastoiditis: a systematic review and meta-analysis of individual participant data. International Journal of Infectious Diseases, 2022, 116, 397-402.	3.3	3
46	Hearing-Related Quality of Life in 75 Patients With a Percutaneous Bone Conduction Device. Otology and Neurotology, 2022, 43, 345-351.	1.3	3
47	Patient Preferences in Sound Processor Loading Time After BAHI Surgery. Otology and Neurotology, 2020, 41, 934-939.	1.3	2
48	Assessment of cost and Healthâ€Related quality of life following three different methods of microtia reconstruction in 30 patients. Clinical Otolaryngology, 2021, 46, 850-853.	1.2	2
49	Quality of life in children receiving treatment for <i>Mycobacterium abscessus</i> otomastoiditis. Clinical Otolaryngology, 2022, 47, 529-535.	1.2	2
50	Comment on "Original Solution for Middle Ear Implant and Anesthetic/Surgical Management in a Child with Severe Craniofacial Dysmorphismâ€: Case Reports in Otolaryngology, 2016, 2016, 1-3.	0.2	1
51	The influence of radiotherapy on outcomes for auricular osseointegrated implants. Clinical Otolaryngology, 2021, 46, 650-653.	1.2	1