Veit SchwĤmmle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7041227/publications.pdf

Version: 2024-02-01

85 papers 3,143 citations

147801 31 h-index 52 g-index

102 all docs

102 docs citations

102 times ranked

4575 citing authors

#	Article	IF	CITATIONS
1	MS2Al: automated repurposing of public peptide LC-MS data for machine learning applications. Bioinformatics, 2022, 38, 875-877.	4.1	6
2	VIQoR: a web service for visually supervised protein inference and protein quantification. Bioinformatics, 2022, 38, 2757-2764.	4.1	0
3	Distinct and diverse chromatin proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions. ELife, 2022, 11 , .	6.0	10
4	Analysis of Label-Based Quantitative Proteomics Data Using. Methods in Molecular Biology, 2021, 2361, 61-73.	0.9	1
5	A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods in Molecular Biology, 2021, 2228, 433-451.	0.9	0
6	biotoolsSchema: a formalized schema for bioinformatics software description. GigaScience, 2021, 10, .	6.4	7
7	APE in the Wild: Automated Exploration of Proteomics Workflows in the bio.tools Registry. Journal of Proteome Research, 2021, 20, 2157-2165.	3.7	8
8	Proteomics Software in bio.tools: Coverage and Annotations. Journal of Proteome Research, 2021, 20, 1821-1825.	3.7	2
9	The European Bioinformatics Community for Mass Spectrometry (EuBlCâ€MS): an open community for bioinformatics training and research. Rapid Communications in Mass Spectrometry, 2021, , e9087.	1.5	3
10	Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource. Journal of Medical Internet Research, 2021, 23, e28253.	4.3	60
11	The AlMe registry for artificial intelligence in biomedical research. Nature Methods, 2021, 18, 1128-1131.	19.0	38
12	Perspectives on automated composition of workflows in the life sciences. F1000Research, 2021, 10, 897.	1.6	7
13	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	12.8	45
14	Community curation of bioinformatics software and data resources. Briefings in Bioinformatics, 2020, 21, 1697-1705.	6.5	12
15	Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. International Journal of Molecular Sciences, 2020, 21, 5799.	4.1	6
16	PolySTest: Robust Statistical Testing of Proteomics Data with Missing Values Improves Detection of Biologically Relevant Features. Molecular and Cellular Proteomics, 2020, 19, 1396-1408.	3.8	23
17	JIB.tools 2.0 – A Bioinformatics Registry for Journal Published Tools with Interoperability to bio.tools. Journal of Integrative Bioinformatics, 2020, 16, .	1.5	2
18	Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Molecular and Cellular Proteomics, 2020, 19, 1418-1435.	3.8	18

#	Article	IF	CITATIONS
19	Visualization of the dynamics of histone modifications and their crosstalk using PTM-CrossTalkMapper. Methods, 2020, 184, 78-85.	3.8	11
20	Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Analytical Chemistry, 2020, 92, 2364-2368.	6.5	18
21	A Genome-Wide Integrative Association Study of DNA Methylation and Gene Expression Data and Later Life Cognitive Functioning in Monozygotic Twins. Frontiers in Neuroscience, 2020, 14, 233.	2.8	5
22	Gene Co-expression Network Analysis Associated with Acupuncture Treatment of Rheumatoid Arthritis: An Animal Model. Journal of Acupuncture Research, 2020, 37, 128-135.	0.3	0
23	Automated workflow composition in mass spectrometry-based proteomics. Bioinformatics, 2019, 35, 656-664.	4.1	39
24	One Thousand and One Software for Proteomics: Tales of the Toolmakers of Science. Journal of Proteome Research, 2019, 18, 3580-3585.	3.7	18
25	The bio.tools registry of software tools and data resources for the life sciences. Genome Biology, 2019, 20, 164.	8.8	39
26	ComplexBrowser: A Tool for Identification and Quantification of Protein Complexes in Large-scale Proteomics Datasets. Molecular and Cellular Proteomics, 2019, 18, 2324-2334.	3.8	14
27	CoExpresso: assess the quantitative behavior of protein complexes in human cells. BMC Bioinformatics, 2019, 20, 17.	2.6	9
28	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	7.1	28
29	IsoProt: A Complete and Reproducible Workflow To Analyze iTRAQ/TMT Experiments. Journal of Proteome Research, 2019, 18, 1751-1759.	3.7	11
30	Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium. Protist, 2019, 170, 125698.	1.5	5
31	VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics, 2018, 34, 2965-2972.	4.1	22
32	ProForma: A Standard Proteoform Notation. Journal of Proteome Research, 2018, 17, 1321-1325.	3.7	35
33	Automated Composition of Scientific Workflows in Mass Spectrometry-Based Proteomics., 2018,,.		0
34	Maximizing Sequence Coverage in Top-Down Proteomics By Automated Multimodal Gas-Phase Protein Fragmentation. Analytical Chemistry, 2018, 90, 12519-12526.	6.5	25
35	Analysis of the Effect of Intestinal Ischemia and Reperfusion on the Rat Neutrophils Proteome. Frontiers in Molecular Biosciences, 2018, 5, 89.	3.5	18
36	Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle–Down Strategy. Analytical Chemistry, 2018, 90, 10425-10433.	6.5	26

#	Article	IF	CITATIONS
37	Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget, 2018, 9, 33077-33097.	1.8	33
38	Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Research, 2017, 45, 9272-9289.	14.5	98
39	Nuclear phosphoproteome analysis of 3T3‣1 preadipocyte differentiation reveals systemâ€wide phosphorylation of transcriptional regulators. Proteomics, 2017, 17, 1600248.	2.2	10
40	Computational and Statistical Methods for High-Throughput Mass Spectrometry-Based PTM Analysis. Methods in Molecular Biology, 2017, 1558, 437-458.	0.9	5
41	A community proposal to integrate proteomics activities in ELIXIR. F1000Research, 2017, 6, 875.	1.6	13
42	Highâ€performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis: Observations and implications. Proteomics, 2016, 16, 907-914.	2.2	64
43	Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Molecular and Cellular Proteomics, 2016, 15, 2715-2729.	3.8	76
44	Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Research, 2016, 44, D38-D47.	14.5	113
45	Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins. Journal of Proteomics, 2015, 129, 3-15.	2.4	28
46	The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments. PLoS ONE, 2014, 9, e106973.	2.5	52
47	Large Scale Analysis of Co-existing Post-translational Modifications in Histone Tails Reveals Global Fine Structure of Cross-talk. Molecular and Cellular Proteomics, 2014, 13, 1855-1865.	3.8	65
48	Selective renal vasoconstriction, exaggerated natriuresis and excretion rates of exosomic proteins in essential hypertension. Acta Physiologica, 2014, 212, 106-118.	3.8	29
49	Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain. Journal of Proteome Research, 2014, 13, 260-267.	3.7	21
50	Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis. Molecular and Cellular Proteomics, 2014, 13, 3457-3472.	3.8	39
51	Middleâ€down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial postâ€translational modifications in histones. Proteomics, 2014, 14, 2200-2211.	2.2	76
52	Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. Journal of Proteomics, 2014, 101, 77-87.	2.4	12
53	Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates. Journal of Proteome Research, 2013, 12, 3874-3883.	3.7	116
54	Precision Mapping of Coexisting Modifications in Histone H3 Tails from Embryonic Stem Cells by ETD-MS/MS. Analytical Chemistry, 2013, 85, 8232-8239.	6.5	70

#	Article	IF	CITATIONS
55	Isotope Labeling-Based Quantitative Proteomics of Developing Seeds of Castor Oil Seed (<i>Ricinus) Tj ETQq1 1</i>	0.784314	rgBT Over
56	A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy. Journal of Proteomics, 2013, 94, 176-185.	2.4	30
57	Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis. Molecular and Cellular Proteomics, 2013, 12, 2992-3005.	3.8	229
58	Evolving cellular automata for diversity generation and pattern recognition: deterministic versus random strategy. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P08006.	2.3	1
59	A Computational Model for Histone Mark Propagation Reproduces the Distribution of Heterochromatin in Different Human Cell Types. PLoS ONE, 2013, 8, e73818.	2.5	7
60	A Novel Method for the Simultaneous Enrichment, Identification, and Quantification of Phosphopeptides and Sialylated Glycopeptides Applied to a Temporal Profile of Mouse Brain Development. Molecular and Cellular Proteomics, 2012, 11, 1191-1202.	3.8	121
61	Performance of Isobaric and Isotopic Labeling in Quantitative Plant Proteomics. Journal of Proteome Research, 2012, 11, 3046-3052.	3.7	52
62	Time-Resolved Quantitative Phosphoproteomics: New Insights into Angiotensin-(1–7) Signaling Networks in Human Endothelial Cells. Journal of Proteome Research, 2012, 11, 3370-3381.	3.7	67
63	Size distribution and structure of Barchan dune fields. Nonlinear Processes in Geophysics, 2011, 18, 455-467.	1.3	30
64	Quantitative Proteomics Analysis of Streptomyces coelicolor Development Demonstrates That Onset of Secondary Metabolism Coincides with Hypha Differentiation. Molecular and Cellular Proteomics, 2010, 9, 1423-1436.	3.8	50
65	A simple and fast method to determine the parameters for fuzzy c–means cluster analysis. Bioinformatics, 2010, 26, 2841-2848.	4.1	174
66	Quantitative Proteome Analysis of Streptomyces coelicolor Nonsporulating Liquid Cultures Demonstrates a Complex Differentiation Process Comparable to That Occurring in Sporulating Solid Cultures. Journal of Proteome Research, 2010, 9, 4801-4811.	3.7	39
67	Dune formation under bimodal winds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22085-22089.	7.1	98
68	The dune size distribution and scaling relations of barchan dune fields. Granular Matter, 2009, 11, 7-11.	2.2	39
69	A simple branching model that reproduces language family and language population distributions. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2874-2879.	2.6	7
70	Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations. European Physical Journal B, 2009, 70, 107-116.	1.5	47
71	q-Gaussians in the porous-medium equation: stability and time evolution. European Physical Journal B, 2008, 66, 537-546.	1.5	30
72	Strictly and asymptotically scale invariant probabilistic models of <i>N</i> correlated binary random variables having <i>q</i> -Gaussians as <i>N</i> i 2 2 4 2 5 limiting distributions. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P09006.	2.3	54

#	Article	IF	CITATIONS
73	Consequences of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">H</mml:mi></mml:math> theorem from nonlinear Fokker-Planck equations. Physical Review E, 2007, 76, 041123.	2.1	103
74	Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. Journal of Mathematical Physics, 2007, 48, 113301.	1.1	36
75	A general nonlinear Fokker-Planck equation and its associated entropy. European Physical Journal B, 2007, 58, 159-165.	1.5	76
76	Profile measurement and simulation of a transverse dune field in the Len \tilde{A} § \tilde{A} 3is Maranhenses. Geomorphology, 2006, 81, 29-42.	2.6	44
77	Phase transition in a mean-field model for sympatric speciation. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 612-618.	2.6	1
78	Speciational view of macroevolution: Are micro and macroevolution decoupled?. Europhysics Letters, 2006, 75, 342-348.	2.0	5
79	Thermodynamic behavior of a phase transition in a model for sympatric speciation. Physical Review E, 2006, 74, 021910.	2.1	11
80	PHASE TRANSITION IN A SEXUAL AGE-STRUCTURED MODEL OF LEARNING FOREIGN LANGUAGES. International Journal of Modern Physics C, 2006, 17, 103-111.	1.7	13
81	The morphology of dunes. Physica A: Statistical Mechanics and Its Applications, 2005, 358, 30-38.	2.6	14
82	Reply to the discussion on †Barchan Dunes: why they cannot be treated as †esolitons†or †esolitary waves††. Earth Surface Processes and Landforms, 2005, 30, 517-517.	2.5	7
83	SIMULATION FOR COMPETITION OF LANGUAGES WITH AN AGING SEXUAL POPULATION. International Journal of Modern Physics C, 2005, 16, 1519-1526.	1.7	25
84	Modelling transverse dunes. Earth Surface Processes and Landforms, 2004, 29, 769-784.	2.5	47
85	Solitary wave behaviour of sand dunes. Nature, 2003, 426, 619-620.	27.8	134