
## Aaron J Camp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7040907/publications.pdf Version: 2024-02-01



AARON L CAMP

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Response characteristics of vestibular evoked myogenic potentials recorded over splenius capitis in young adults and adolescents. Acta Otorrinolaringologica (English Edition), 2022, 73, 164-176.                                       | 0.2 | 0         |
| 2  | Response characteristics of vestibular evoked myogenic potentials recorded over splenius capitis in young adults and adolescents. Acta Otorrinolaringológica Española, 2021, , .                                                         | 0.4 | 1         |
| 3  | Summating potentials from the utricular macula of anaesthetized guinea pigs. Hearing Research, 2021, 406, 108259.                                                                                                                        | 2.0 | 12        |
| 4  | Stochastic and sinusoidal electrical stimuli increase the irregularity and gain of Type A and B medial vestibular nucleus neurons, <i>in vitro</i> . Journal of Neuroscience Research, 2021, 99, 3066-3083.                              | 2.9 | 0         |
| 5  | The intrinsic plasticity of medial vestibular nucleus neurons during vestibular compensation—a<br>systematic review and meta-analysis. Systematic Reviews, 2020, 9, 145.                                                                 | 5.3 | 8         |
| 6  | Impact of galvanic vestibular stimulation-induced stochastic resonance on the output of the vestibular system: A systematic review. Brain Stimulation, 2020, 13, 533-535.                                                                | 1.6 | 12        |
| 7  | K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed<br>Behaviour. Neuroscience, 2020, 449, 46-62.                                                                                                  | 2.3 | 2         |
| 8  | Splenius capitis: sensitive target for the cVEMP in older and neurodegenerative patients. European<br>Archives of Oto-Rhino-Laryngology, 2019, 276, 2991-3003.                                                                           | 1.6 | 8         |
| 9  | Are viral-infections associated with Ménière's Disease? A systematic review and meta-analysis of<br>molecular-markers of viral-infection in case-controlled observational studies of MD. PLoS ONE, 2019,<br>14, e0225650.                | 2.5 | 12        |
| 10 | Stochastic Noise Application for the Assessment of Medial Vestibular Nucleus Neuron Sensitivity In<br>Vitro. Journal of Visualized Experiments, 2019, , .                                                                                | 0.3 | 3         |
| 11 | Heading in the right direction: the importance of direction selectivity for cerebellar motor learning.<br>Journal of Physiology, 2018, 596, 139-141.                                                                                     | 2.9 | 1         |
| 12 | Animal Models of Vestibular Evoked Myogenic Potentials: The Past, Present, and Future. Frontiers in<br>Neurology, 2018, 9, 489.                                                                                                          | 2.4 | 13        |
| 13 | Splenius capitis is a reliable target for measuring cervical vestibular evoked myogenic potentials in adults. European Journal of Neuroscience, 2017, 45, 1212-1223.                                                                     | 2.6 | 13        |
| 14 | Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice. Frontiers in Aging<br>Neuroscience, 2016, 8, 12.                                                                                                          | 3.4 | 18        |
| 15 | Near Infrared (NIr) Light Increases Expression of a Marker of Mitochondrial Function in the Mouse<br>Vestibular Sensory Epithelium. Journal of Visualized Experiments, 2015, , .                                                         | 0.3 | 3         |
| 16 | Vestibular Interactions in the Thalamus. Frontiers in Neural Circuits, 2015, 9, 79.                                                                                                                                                      | 2.8 | 68        |
| 17 | Efferent Vestibular Neurons Show Homogenous Discharge Output But Heterogeneous Synaptic Input<br>Profile In Vitro. PLoS ONE, 2015, 10, e0139548.                                                                                         | 2.5 | 19        |
| 18 | Preliminary Characterization of Voltage-Activated Whole-Cell Currents in Developing Human<br>Vestibular Hair Cells and Calyx Afferent Terminals. JARO - Journal of the Association for Research in<br>Otolaryngology, 2014, 15, 755-766. | 1.8 | 35        |

AARON J CAMP

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Behavioral Assessment of the Aging Mouse Vestibular System. Journal of Visualized Experiments, 2014, ,                                                                                             | 0.3 | 25        |
| 20 | An Isolated Semi-intact Preparation of the Mouse Vestibular Sensory Epithelium for Electrophysiology and High-resolution Two-photon Microscopy. Journal of Visualized Experiments, 2013, , e50471. | 0.3 | 6         |
| 21 | Noise Normalizes Firing Output of Mouse Lateral Geniculate Nucleus Neurons. PLoS ONE, 2013, 8, e57961.                                                                                             | 2.5 | 8         |
| 22 | Intrinsic Neuronal Excitability: A Role in Homeostasis and Disease. Frontiers in Neurology, 2012, 3, 50.                                                                                           | 2.4 | 9         |
| 23 | The impact of brief exposure to high contrast on the contrast response of neurons in primate lateral geniculate nucleus. Journal of Neurophysiology, 2011, 106, 1310-1321.                         | 1.8 | 5         |
| 24 | Intrinsic neuronal excitability: implications for health and disease. Biomolecular Concepts, 2011, 2, 247-259.                                                                                     | 2.2 | 7         |
| 25 | Adaptable Mechanisms That Regulate the Contrast Response of Neurons in the Primate Lateral<br>Geniculate Nucleus. Journal of Neuroscience, 2009, 29, 5009-5021.                                    | 3.6 | 47        |
| 26 | Inhibitory Synaptic Transmission Differs in Mouse Type A and B Medial Vestibular Nucleus Neurons In<br>Vitro. Journal of Neurophysiology, 2006, 95, 3208-3218.                                     | 1.8 | 46        |