Stefanie Scheu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7040824/publications.pdf Version: 2024-02-01

STEEANIE SCHEU

#	Article	IF	CITATIONS
1	Dendritic cell functions in vivo: A user's guide to current and next―generation mutant mouse models. European Journal of Immunology, 2022, 52, 1712-1749.	1.6	5
2	Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML. Cancer Discovery, 2022, 12, 1560-1579.	7.7	13
3	The Mycotoxin Beauvericin Exhibits Immunostimulatory Effects on Dendritic Cells via Activating the TLR4 Signaling Pathway. Frontiers in Immunology, 2022, 13, 856230.	2.2	2
4	Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders?. Cells, 2021, 10, 941.	1.8	7
5	The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. BMC Genomic Data, 2021, 22, 37.	0.7	4
6	Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. International Journal of Molecular Sciences, 2020, 21, 475.	1.8	8
7	Social Defeat Modulates T Helper Cell Percentages in Stress Susceptible and Resilient Mice. International Journal of Molecular Sciences, 2019, 20, 3512.	1.8	33
8	A mouse model-based screening platform for the identification of immune activating compounds such as natural products for novel cancer immunotherapies. Bioorganic and Medicinal Chemistry, 2019, 27, 115145.	1.4	4
9	Production of IFNβ by Conventional Dendritic Cells after Stimulation with Viral Compounds and IFNβ-Independent IFNAR1-Signaling Pathways are Associated with Aggravation of Polymicrobial Sepsis. International Journal of Molecular Sciences, 2019, 20, 4410.	1.8	4
10	Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Frontiers in Immunology, 2019, 10, 778.	2.2	99
11	Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. International Journal of Molecular Sciences, 2019, 20, 190.	1.8	22
12	Identification of a novel Dlg2 isoform differentially expressed in IFNÎ ² -producing plasmacytoid dendritic cells. BMC Genomics, 2018, 19, 194.	1.2	6
13	Altered B Cell Homeostasis in Patients with Major Depressive Disorder and Normalization of CD5 Surface Expression on Regulatory B Cells in Treatment Responders. Journal of NeuroImmune Pharmacology, 2018, 13, 90-99.	2.1	37
14	Tumor Necrosis Factor-Mediated Survival of CD169 ⁺ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection. Journal of Virology, 2018, 92, .	1.5	16
15	Hepatic Rac1 GTPase contributes to liver-mediated basal immune homeostasis and LPS-induced endotoxemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1277-1292.	1.9	9
16	Alterations of the Innate Immune System in Susceptibility and Resilience After Social Defeat Stress. Frontiers in Behavioral Neuroscience, 2018, 12, 141.	1.0	41
17	Mitochondria, Microglia, and the Immune System—How Are They Linked in Affective Disorders?. Frontiers in Psychiatry, 2018, 9, 739.	1.3	64
18	Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression. Nature Communications, 2017, 8, 14447.	5.8	22

STEFANIE SCHEU

#	Article	IF	CITATIONS
19	Chemokine CCL17 is expressed by dendritic cells in the CNS during experimental autoimmune encephalomyelitis and promotes pathogenesis of disease. Brain, Behavior, and Immunity, 2017, 66, 382-393.	2.0	50
20	Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression. Frontiers in Immunology, 2017, 8, 1622.	2.2	7
21	The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. International Journal of Molecular Sciences, 2017, 18, 2306.	1.8	104
22	Cutting Edge: IFN-Î ² Expression in the Spleen Is Restricted to a Subpopulation of Plasmacytoid Dendritic Cells Exhibiting a Specific Immune Modulatory Transcriptome Signature. Journal of Immunology, 2016, 196, 4447-4451.	0.4	31
23	Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice. Behavioural Brain Research, 2016, 314, 87-95.	1.2	18
24	<i>In Vivo</i> Conditions Enable IFNAR-Independent Type I Interferon Production by Peritoneal CD11b ⁺ Cells upon Thogoto Virus Infection. Journal of Virology, 2016, 90, 9330-9337.	1.5	10
25	Cannabinoid Receptor 2 Modulates Susceptibility to Experimental Cerebral Malaria through a CCL17-dependent Mechanism. Journal of Biological Chemistry, 2016, 291, 19517-19531.	1.6	18
26	CD169+ macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death and Disease, 2016, 7, e2446-e2446.	2.7	42
27	Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e289.	3.1	84
28	Cutting Edge: The RIG-I Ligand 3pRNA Potently Improves CTL Cross-Priming and Facilitates Antiviral Vaccination. Journal of Immunology, 2016, 196, 2439-2443.	0.4	42
29	Immunotherapeutic targeting of LIGHT/LTβR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. MAbs, 2016, 8, 478-490.	2.6	11
30	IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathologica Communications, 2015, 3, 20.	2.4	89
31	The cannabinoid receptor 2 is involved in acute rejection of cardiac allografts. Life Sciences, 2015, 138, 29-34.	2.0	10
32	Entry Mechanisms of Herpes Simplex Virus 1 into Murine Epidermis: Involvement of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors. Journal of Virology, 2015, 89, 262-274.	1.5	42
33	IRF4 and BATF are critical for CD8+ T-cell function following infection with LCMV. Cell Death and Differentiation, 2014, 21, 1050-1060.	5.0	72
34	Therapeutic Blockade of LIGHT Interaction With Herpesvirus Entry Mediator and Lymphotoxin β Receptor Attenuates In Vivo Cytotoxic Allogeneic Responses. Transplantation, 2014, 98, 1165-1174.	0.5	6
35	M27 Expressed by Cytomegalovirus Counteracts Effective Type I Interferon Induction of Myeloid Cells but Not of Plasmacytoid Dendritic Cells. Journal of Virology, 2014, 88, 13638-13650.	1.5	24
36	Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. Journal of Immunology, 2014, 193, 2496-2503.	0.4	46

STEFANIE SCHEU

#	Article	IF	CITATIONS
37	Reduced type I interferon production by dendritic cells and weakened antiviral immunity in patients with Wiskott-Aldrich syndrome protein deficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 815-824.e2.	1.5	27
38	Pro-Apoptotic and Immunostimulatory Tetrahydroxanthone Dimers from the Endophytic Fungus Phomopsis longicolla. Journal of Organic Chemistry, 2013, 78, 12409-12425.	1.7	87
39	LIGHT (TNFSF14/CD258) Is a Decisive Factor for Recovery from Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 154-163.	0.4	19
40	Stochastic Expression of the Interferon- \hat{I}^2 Gene. PLoS Biology, 2012, 10, e1001249.	2.6	107
41	Reply to Othy et al.: Dendritic cell-specific expression of CCR4 is required for development of EAE. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2414-E2414.	3.3	3
42	CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3897-3902.	3.3	72
43	The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nature Medicine, 2011, 17, 596-603.	15.2	160
44	The TGF-β signaling modulators TRAP1/TGFBRAP1 and VPS39/Vam6/TLP are essential for early embryonic development. Immunobiology, 2011, 216, 343-350.	0.8	29
45	Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. Journal of Experimental Medicine, 2011, 208, 797-809.	4.2	72
46	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	2.1	26
47	Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology, 2010, 52, 25-32.	3.6	78
48	A Fluorescence Reporter Model Defines "Tip-DCs―as the Cellular Source of Interferon β in Murine Listeriosis. PLoS ONE, 2010, 5, e15567.	1.1	37
49	The catalytic PI3K isoforms p110Î ³ and p110Î [~] contribute to B cell development and maintenance, transformation, and proliferation. Journal of Leukocyte Biology, 2010, 87, 1083-1095.	1.5	55
50	Shortened treatment duration in treatment-naive genotype 1 HCV patients with rapid virological response: A meta-analysis. Journal of Hepatology, 2010, 52, 25-31.	1.8	64
51	Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development. Cell, 2008, 135, 37-48.	13.5	567
52	Cutting Edge: Selective Blockade of LIGHT-Lymphotoxin β Receptor Signaling Protects Mice from Experimental Cerebral Malaria Caused by <i>Plasmodium berghei</i> ANKA. Journal of Immunology, 2008, 181, 7458-7462.	0.4	26
53	Visualization of IFNÎ ² production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20416-20421.	3.3	113
54	Both Functional LTβ Receptor and TNF Receptor 2 Are Required for the Development of Experimental Cerebral Malaria. PLoS ONE, 2008, 3, e2608.	1.1	44

STEFANIE SCHEU

#	Article	IF	CITATIONS
55	Expression of lymphotoxinâ€Î±Î² on antigenâ€specific T cells is required for dendritic cell function. FASEB Journal, 2008, 22, 1065.30.	0.2	0
56	Expression of lymphotoxin-αβ on antigen-specific T cells is required for DC function. Journal of Experimental Medicine, 2007, 204, 1071-1081.	4.2	68
57	Activation of the integrated stress response during T helper cell differentiation. Nature Immunology, 2006, 7, 644-651.	7.0	137
58	B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunology, 2005, 6, 90-98.	7.0	543
59	A Lymphotoxin-IFN-β Axis Essential for Lymphocyte Survival Revealed during Cytomegalovirus Infection. Journal of Immunology, 2005, 174, 7217-7225.	0.4	78
60	Th2 Cells: Orchestrating Barrier Immunity. Advances in Immunology, 2004, 83, 163-189.	1.1	45
61	Thymic Medullary Epithelial Cell Differentiation, Thymocyte Emigration, and the Control of Autoimmunity Require Lympho–Epithelial Cross Talk via LTβR. Journal of Experimental Medicine, 2003, 198, 757-769.	4.2	341
62	The Lymphotoxin β Receptor Is Critically Involved in Controlling Infections with the Intracellular Pathogens <i>Mycobacterium tuberculosis</i> and <i>Listeria monocytogenes</i> . Journal of Immunology, 2003, 170, 5210-5218.	0.4	134
63	Targeted Disruption of LIGHT Causes Defects in Costimulatory T Cell Activation and Reveals Cooperation with Lymphotoxin β in Mesenteric Lymph Node Genesis. Journal of Experimental Medicine, 2002–195–1613-1624	4.2	241