List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7040773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating oestradiol determines liver lipid deposition in rats fed standard diets partially unbalanced with higher lipid or protein proportions. British Journal of Nutrition, 2022, 128, 1499-1508.	1.2	5
2	Catch-up growth in juvenile rats, fat expansion, and dysregulation of visceral adipose tissue. Pediatric Research, 2021, , .	1.1	4
3	Modulation of Food Intake by Differential TAS2R Stimulation in Rat. Nutrients, 2020, 12, 3784.	1.7	16
4	Dietary Energy Partition: The Central Role of Glucose. International Journal of Molecular Sciences, 2020, 21, 7729.	1.8	13
5	Unconnected Body Accrual of Dietary Lipid and Protein in Rats Fed Diets with Different Lipid and Protein Content. Molecular Nutrition and Food Research, 2020, 64, 2000265.	1.5	3
6	Higher lactate production from glucose in cultured adipose nucleated stromal cells than for rat adipocytes. Adipocyte, 2019, 8, 61-76.	1.3	6
7	Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth. Pediatric Research, 2019, 86, 195-201.	1.1	5
8	Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis. Nutrients, 2019, 11, 513.	1.7	8
9	The Food Energy/Protein Ratio Regulates the Rat Urea Cycle but Not Total Nitrogen Losses. Nutrients, 2019, 11, 316.	1.7	6
10	The Anomeric Nature of Glucose and Its Implications on Its Analyses and the Influence of Diet: Are Routine Glycaemia Measurements Reliable Enough?. Journal of Endocrinology and Metabolism, 2019, 9, 63-70.	0.1	7
11	Use of 14C-glucose by primary cultures of mature rat epididymal adipocytes. Marked release of lactate and glycerol, but limited lipogenesis in the absence of external stimuli. Adipocyte, 2018, 7, 204-217.	1.3	4
12	Effect of sex on glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ, 2018, 6, e5440.	0.9	6
13	Modulation of SHBG binding to testosterone and estradiol by sex and morbid obesity. European Journal of Endocrinology, 2017, 176, 393-404.	1.9	27
14	Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Scientific Reports, 2017, 7, 8983.	1.6	56
15	In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. PeerJ, 2017, 5, e3697.	0.9	20
16	Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet. RSC Advances, 2016, 6, 11278-11288.	1.7	9
17	Stable isotope analysis of dietary arginine accrual and disposal efficiency in male rats fed diets with different protein content. RSC Advances, 2016, 6, 69177-69184.	1.7	2
18	A method for the measurement of lactate, glycerol and fatty acid production from14C-glucose in primary cultures of rat epididymal adipocytes. Analytical Methods, 2016, 8, 7873-7885.	1.3	5

#	Article	IF	CITATIONS
19	White adipose tissue urea cycle activity is not affected by one-month treatment with a hyperlipidic diet in female rats. Food and Function, 2016, 7, 1554-1563.	2.1	3
20	Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion. PeerJ, 2016, 4, e2302.	0.9	4
21	Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures. PeerJ, 2016, 4, e2725.	0.9	12
22	The urea cycle of rat white adipose tissue. RSC Advances, 2015, 5, 93403-93414.	1.7	11
23	Evidences of Basal Lactate Production in the Main White Adipose Tissue Sites of Rats. Effects of Sex and a Cafeteria Diet. PLoS ONE, 2015, 10, e0119572.	1.1	31
24	Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate. PLoS ONE, 2015, 10, e0139502.	1.1	21
25	Moderate calorie restriction during gestation programs offspring for lower BAT thermogenic capacity driven by thyroid and sympathetic signaling. International Journal of Obesity, 2015, 39, 339-345.	1.6	27
26	Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats. PeerJ, 2015, 3, e1083.	0.9	4
27	Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet. PeerJ, 2015, 3, e1101.	0.9	12
28	Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue. PeerJ, 2015, 3, e1399.	0.9	6
29	Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile. PLoS ONE, 2014, 9, e97195.	1.1	23
30	Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability. BioMed Research International, 2014, 2014, 1-9.	0.9	16
31	Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability. Scientific Reports, 2014, 4, 3663.	1.6	43
32	Treatment of Rats with a Self-Selected Hyperlipidic Diet, Increases the Lipid Content of the Main Adipose Tissue Sites in a Proportion Similar to That of the Lipids in the Rest of Organs and Tissues. PLoS ONE, 2014, 9, e90995.	1.1	21
33	The use of Transwellsâ,,¢ improves the rates of differentiation and growth of cultured 3T3L1 cells. Analytical and Bioanalytical Chemistry, 2013, 405, 5605-5610.	1.9	6
34	Purging Behavior Modulates the Relationships of Hormonal and Behavioral Parameters in Women with Eating Disorders. Neuropsychobiology, 2013, 67, 230-240.	0.9	3
35	Modulation in Wistar Rats of Blood Corticosterone Compartmentation by Sex and a Cafeteria Diet. PLoS ONE, 2013, 8, e57342.	1.1	5
36	Oleoylâ€Estrone. Medicinal Research Reviews, 2012, 32, 1263-1291.	5.0	6

XAVIER REMESAR

#	Article	IF	CITATIONS
37	Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells. PLoS ONE, 2012, 7, e34381.	1.1	7
38	Nitrogen Metabolism in Zucker Rats is Affected by Moderate Reduction, but not by Moderate Increase in Dietary Protein. The Open Obesity Journal, 2012, 4, 44-50.	0.1	0
39	Oleoyl-estrone is a precursor of an estrone-derived ponderostat signal. Journal of Steroid Biochemistry and Molecular Biology, 2011, 124, 99-111.	1.2	10
40	Maternal Treatment With Oleoylâ€estrone Induces Resistance to Lipid Accrual in Their Descendants. Obesity, 2008, 16, 2223-2231.	1.5	1
41	Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning. Reproductive Biology and Endocrinology, 2008, 6, 23.	1.4	3
42	Different Uptake and Handling of Oleoyl-estrone by Fetuses and Neonatal Rats. Hormone and Metabolic Research, 2007, 39, 278-281.	0.7	3
43	The Administration of Oleoyl-estrone to Lactating Dams Induces Selective Changes in the Normal Growth Pattern of their Pups. Hormone and Metabolic Research, 2007, 39, 582-588.	0.7	5
44	Oleoyl-estrone treatment activates apoptotic mechanisms in white adipose tissue. Life Sciences, 2007, 80, 293-298.	2.0	18
45	Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue. BMC Genomics, 2007, 8, 292.	1.2	19
46	Oleoylâ€Estrone Treatment to Late Pregnant and Midâ€Lactating Rats Affects the Expression of Lipid Metabolism Genes. Lipids, 2007, 42, 827-833.	0.7	3
47	Weight Loss with Long-term Intermittent Treatment with Oral Oleoyl-estrone in Lean Zucker Male Rats. Hormone and Metabolic Research, 2006, 38, 497-500.	0.7	2
48	Rats treated with oleoyl-oestrone maintain glucidic homeostasis: comparisons with a pair-fed model. British Journal of Nutrition, 2005, 94, 738-745.	1.2	16
49	Short-term oral oleoyl-estrone treatment increases plasma cholesterol turnover in the rat. International Journal of Obesity, 2005, 29, 534-539.	1.6	13
50	Effects of oleoyl-estrone with dexfenfluramine, sibutramine or phentermine on overweight rats. European Journal of Pharmacology, 2005, 513, 243-248.	1.7	14
51	Effects of oral estrone on rat energy balance. Steroids, 2005, 70, 667-672.	0.8	10
52	Tamoxifen does not prevent the mobilization of body lipids elicited by oleoyl-estrone. Steroids, 2004, 69, 661-665.	0.8	5
53	Technical Note: Measurement of Total Estrone Content in Foods. Application to Dairy Products. Journal of Dairy Science, 2004, 87, 2331-2336.	1.4	16
54	Zucker obese rats store less acyl-estrone than lean controls. International Journal of Obesity, 2003, 27, 428-432.	1.6	12

#	Article	IF	CITATIONS
55	Effect of Oral Oleoyl-Estrone on the Energy Balance of Diabetic Rats. Hormone and Metabolic Research, 2003, 35, 471-478.	0.7	5
56	Effect of oral oleoyl-estrone treatment on plasma lipoproteins and tissue lipase activities of Zucker lean and obese female rats. International Journal of Obesity, 2002, 26, 618-626.	1.6	28
57	Pharmacological Approaches for the Treatment of Obesity. Drugs, 2002, 62, 915-944.	4.9	31
58	Changes in UCP expression in tissues of Zucker rats fed diets with different protein content. Journal of Physiology and Biochemistry, 2002, 58, 135-141.	1.3	6
59	Effect of oral oleoyl-estrone on adipose tissue composition in male rats. International Journal of Obesity, 2002, 26, 1092-1102.	1.6	33
60	Oleoyl-estrone does not have direct estrogenic effects on rats. Life Sciences, 2001, 69, 749-761.	2.0	21
61	Intestinal handling of an oral oleoyl-estrone gavage by the rat. Life Sciences, 2001, 69, 763-777.	2.0	15
62	Effect of 24-h food deprivation on lipoprotein composition and oleoyl-estrone content of lean and obese Zucker rats. European Journal of Nutrition, 2001, 40, 155-160.	1.8	9
63	Dietary oleoyl-estrone delays the growth rate of young rats. European Journal of Nutrition, 2001, 40, 17-22.	1.8	8
64	Modulation of muscle UCP expression by oleoyl-estrone in the rat. Journal of Physiology and Biochemistry, 2001, 57, 289-290.	1.3	1
65	Anomalous lipoproteins in obese Zucker rats. Diabetes, Obesity and Metabolism, 2001, 3, 259-270.	2.2	13
66	Oral gavage of oleoyl-oestrone has a stronger effect on body weight in male Zucker obese rats than in female. Diabetes, Obesity and Metabolism, 2001, 3, 203-208.	2.2	23
67	Modulation by Leptin, Insulin and Corticosterone of Oleoyl-estrone Synthesis in Cultured 3T3 L1 Cells. Bioscience Reports, 2001, 21, 755-763.	1.1	9
68	Corticosteroid-binding globulin synthesis and distribution in rat white adipose tissue. Molecular and Cellular Biochemistry, 2001, 228, 25-31.	1.4	19
69	Daily Oral Oleoylâ€Estrone Gavage Induces a Doseâ€Dependent Loss of Fat in Wistar Rats. Obesity, 2001, 9, 202-209.	4.0	45
70	Short-term effects of a hypocaloric diet on nitrogen excretion in morbid obese women. European Journal of Clinical Nutrition, 2001, 55, 186-191.	1.3	7
71	Absorption of a Protein Gavage in Zucker Lean Rats. Influence of Protein Content in the Diet. Archives of Physiology and Biochemistry, 2001, 109, 168-174.	1.0	3
72	Lipoprotein Lipase and Cholesterol Transfer Activities of Lean and Obese Zucker Rats. Hormone and Metabolic Research, 2001, 33, 458-462.	0.7	6

#	Article	IF	CITATIONS
73	Modulation of Corticosterone Availability to White Adipose Tissue of Lean and Obese Zucker Rats by Corticosteroid-Binding Globulin. Hormone and Metabolic Research, 2001, 33, 407-411.	0.7	20
74	URINARY FREE CORTISOL EXCRETION PATTERN IN MORBID OBESE WOMEN. Endocrine Research, 2001, 27, 261-268.	0.6	4
75	Methodological approaches to assess body-weight regulation and aetiology of obesity. Proceedings of the Nutrition Society, 2000, 59, 405-411.	0.4	11
76	Oleoyl-estrone induces the massive loss of body weight in Zucker fa/fa rats fed a high-energy hyperlipidic diet. Journal of Nutritional Biochemistry, 2000, 11, 530-535.	1.9	13
77	Oral oleoyl-estrone induces the rapid loss of body fat in Zucker lean rats fed a hyperlipidic diet. International Journal of Obesity, 2000, 24, 1405-1412.	1.6	33
78	Oleoyl-Estrone Lowers the Body Weight of Bothob/obanddb/dbMice. Hormone and Metabolic Research, 2000, 32, 246-250.	0.7	11
79	Distribution of Oleoyl-Estrone in Rat Plasma Lipoproteins. Hormone and Metabolic Research, 1999, 31, 597-601.	0.7	28
80	Plasma oestrone-fatty acid ester levels are correlated with body fat mass in humans. Clinical Endocrinology, 1999, 50, 253-260.	1.2	33
81	Effect of food deprivation on rat plasma estrone fatty acid esters. Diabetes, Obesity and Metabolism, 1999, 1, 353-356.	2.2	12
82	The hepatic amino acid system A transport activity, is up-regulated in obese Zucker rats. Journal of Nutritional Biochemistry, 1999, 10, 716-722.	1.9	5
83	Oleoyl-estrone treatment affects the ponderostat setting differently in lean and obese Zucker rats. International Journal of Obesity, 1999, 23, 366-373.	1.6	44
84	Short-term treatment with estrone oleate in liposomes (Merlin-2) does not affect the expression of the ob gene in Zucker obese rats. Molecular and Cellular Biochemistry, 1999, 197, 109-115.	1.4	9
85	Ammonium uptake and urea production in hepatocytes from lean and obese Zucker rats. , 1999, 200, 163-167.		3
86	Leptin enhances the synthesis of oleoyl-estrone from estrone in white adipose tissue. European Journal of Nutrition, 1999, 38, 99-104.	1.8	15
87	Estrone in food: a factor influencing the development of obesity?. European Journal of Nutrition, 1999, 38, 247-253.	1.8	55
88	Effect of dietary protein content on tissue protein synthesis rates in Zucker lean rats. Nutrition Research, 1999, 19, 1017-1026.	1.3	20
89	3-hydroxybutyrate inhibits noradrenaline-induced thermogenesis in lean but not in obese Zucker rats. International Journal of Obesity, 1998, 22, 734-740.	1.6	9
90	Hind leg heat balance in obese Zucker rats during exercise. Pflugers Archiv European Journal of Physiology, 1998, 435, 454-464.	1.3	17

XAVIER REMESAR

#	Article	IF	CITATIONS
91	During intense exercise, obese women rely more than lean women on aerobic energy. Pflugers Archiv European Journal of Physiology, 1998, 435, 495-502.	1.3	11
92	Increased leptin productionin vivoand insulin cleavage by the omental adipose tissue of morbidly obese patients. Clinical Endocrinology, 1998, 48, 181-185.	1.2	5
93	Oleoyl-estrone does not alter hypothalamic neuropeptide Y in zucker lean and obese rats. Peptides, 1998, 19, 1631-1635.	1.2	7
94	Zucker obese rats are insensitive to the CRH-increasing effect of oleoyl-estrone. Brain Research Bulletin, 1998, 46, 529-534.	1.4	17
95	Effect of oleoyl-estrone administration on corticosterone binding to tissues of lean and obese Zucker rats. Journal of Steroid Biochemistry and Molecular Biology, 1998, 66, 165-169.	1.2	6
96	Structural determinants of oleoyl-estrone slimming effects. Life Sciences, 1998, 62, 1349-1359.	2.0	18
97	Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sciences, 1998, 63, 337-349.	2.0	112
98	Differential Shortâ€Term Distribution of Estrone and Oleoylâ€Estrone Administered in Liposomes to Lean and Obese Zucker Rats. Obesity, 1998, 6, 34-39.	4.0	8
99	Corticosterone Binding to Tissues of Adrenalectomized Lean and Obese Zucker Rats. Hormone and Metabolic Research, 1998, 30, 699-704.	0.7	14
100	Effect of adrenalectomy on the slimming activity of liposome-carried oleoyl-estrone in the rat. International Journal of Obesity, 1998, 22, 1225-1230.	1.6	9
101	Rats Receiving the Slimming Agent Oleoyl-Estrone in Liposomes (Merlin-2) Decrease Food Intake but Maintain Thermogenesis. Archives of Physiology and Biochemistry, 1997, 105, 663-672.	1.0	44
102	Effect of the Slimming Agent Oleoyl-Estrone in Liposomes on the Body Weight of Rats Fed a Cafeteria Diet. Archives of Physiology and Biochemistry, 1997, 105, 487-495.	1.0	22
103	Short-term treatment with oleoyl-oestrone in liposomes (Merlin-2) strongly reduces the expression of the ob gene in young rats. Biochemical Journal, 1997, 326, 357-360.	1.7	44
104	Amino Acid Nitrogen Handling by Hind Leg Muscle of the Rat During Exercise. Archives of Physiology and Biochemistry, 1997, 105, 478-486.	1.0	3
105	Is leptin an insulin counter-regulatory hormone?. FEBS Letters, 1997, 402, 9-11.	1.3	60
106	Carbohydrate handling in exercising muscle of obese Zucker rats. International Journal of Obesity, 1997, 21, 239-249.	1.6	3
107	Lactate-bicarbonate interrelationship during exercise and recovery in lean and obese Zucker rats. International Journal of Obesity, 1997, 21, 333-339.	1.6	5
108	Regulation of ammonia-metabolizing enzymes expression in the liver of obese rats: Differences between genetic and nutritional obesities. International Journal of Obesity, 1997, 21, 681-685.	1.6	5

#	Article	IF	CITATIONS
109	Muscle amino acid pattern in obese rats. International Journal of Obesity, 1997, 21, 698-703.	1.6	12
110	Effect of the slimming agent oleoyl-estrone in liposomes on the body weight of Zucker obese rats. International Journal of Obesity, 1997, 21, 789-795.	1.6	26
111	Amino acid metabolism in the kidneys of genetic and nutritionally obese rats. IUBMB Life, 1997, 42, 261-269.	1.5	1
112	Short-term handling of the slimming agent oleoyl-estrone in liposomes (Merlin-2) by the rat. Molecular and Cellular Biochemistry, 1997, 177, 153-157.	1.4	12
113	Leptin. , 1997, 17, 225-234.		13
114	Leptin: An annotated addendum. , 1997, 17, 499-504.		1
115	A Method for the Measurement of Plasma Estrone Fatty Ester Levels. Analytical Biochemistry, 1997, 249, 247-250.	1.1	31
116	Muscle Blood Flow During Intense Exercise in the Obese Rat. Archives of Physiology and Biochemistry, 1996, 104, 337-343.	1.0	5
117	Hind-leg heat losses in cold-exposed rats. Journal of Thermal Biology, 1995, 20, 343-348.	1.1	3
118	Treadmill chamber for studies of respiratory gas exchange in the rat during exercise. Archives of Physiology and Biochemistry, 1995, 103, 175-186.	1.0	9
119	Estrogen effects on blood amino acid compartmentation. Life Sciences, 1995, 57, 1589-1597.	2.0	5
120	Insulin degradation by adipose tissue is increased in human obesity. Journal of Clinical Endocrinology and Metabolism, 1995, 80, 693-695.	1.8	4
121	Effect of genetic and dietary obesity on sodium, potassium, calcium and magnesium handling by the rat. International Journal of Food Sciences and Nutrition, 1994, 45, 191-201.	1.3	1
122	Effect of cold-exposure on rat organ blood flows. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1994, 102, 55-59.	0.1	13
123	Management of dietary essential metals (iron, copper, zinc, chromium and manganese) by Wistar and Zucker obese rats fed a self-selected high-energy diet. BioMetals, 1994, 7, 117-29.	1.8	10
124	Splanchnic amino acid pattern in genetic and dietary obesity in the rat. Molecular and Cellular Biochemistry, 1994, 139, 11-19.	1.4	5
125	The effect of cafeteria feeding on energy balance in lean and obese zucker rats. Nutrition Research, 1994, 14, 1077-1088.	1.3	4
126	l-Alanine transport in small intestine brush-border membrane vesicles of obese rats. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1192, 159-166.	1.4	5

XAVIER REMESAR

#	Article	IF	CITATIONS
127	Effect of a cafeteria diet on energy intake and balance in Wistar rats. Physiology and Behavior, 1994, 56, 65-71.	1.0	19
128	Hind leg muscle amino acid balances in cold-exposed rats. Molecular and Cellular Biochemistry, 1994, 130, 149-157.	1.4	4
129	Whole-rat protein content estimation: applicability of the N × 6·25 factor. British Journal of Nutrition, 1994, 72, 199-209.	1.2	33
130	Steroid hormones and the control of body weight. Medicinal Research Reviews, 1993, 13, 623-631.	5.0	7
131	Distribution of oleyl-anilide hydrolising activity in rat and human tissues. Toxicology, 1993, 80, 131-139.	2.0	4
132	Individual amino acid balances in young lean and obese Zucker rats fed a cafeteria diet. Molecular and Cellular Biochemistry, 1993, 121, 45-57.	1.4	20
133	METHODOLOGICAL EVALUATION OF INDIRECT CALORIMETRY DATA IN LEAN AND OBESE RATS. Clinical and Experimental Pharmacology and Physiology, 1993, 20, 731-742.	0.9	10
134	A radio-enzymatic method for the estimation of l-leucine-specific radioactivity. Journal of Proteomics, 1993, 26, 291-297.	2.4	1
135	Cooling rates of tissue samples during freezing with liquid nitrogen. Journal of Proteomics, 1993, 27, 77-86.	2.4	13
136	Alanine uptake by liver of mid-lactating rats. Metabolism: Clinical and Experimental, 1993, 42, 1109-1115.	1.5	4
137	Water balance in zucker obese rats. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 104, 813-818.	0.7	12
138	Lipid synthesis: A thermogenic mechanism in cold-exposed zucker fa/fa rats. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 105, 369-376.	0.7	20
139	Analysis of ultradian heat production and aortic core temperature rhythms in the rat. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1993, 101, 117-122.	0.1	2
140	Effect of genetic and dietary obesity on sulphur management by the rat. Nutrition Research, 1993, 13, 825-830.	1.3	1
141	Rates of utilization of intravenous oleylanilide administered chronically to the rat. Food and Chemical Toxicology, 1993, 31, 37-40.	1.8	1
142	Intestinal and hepatic nitrogen balance in the rat after the administration of an oral protein load. British Journal of Nutrition, 1993, 69, 733-742.	1.2	6
143	Effect of food deprivation and refeeding on rat organ temperatures. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1992, 100, 207-211.	0.1	11
144	Dietary sucrose supplementation fails to modify fat deposition in lean or obese rats. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1992, 100, 137-142.	0.1	0

#	Article	IF	CITATIONS
145	An enzymatic method for the estimation of L-leucine in rat blood. Journal of Proteomics, 1992, 24, 39-44.	2.4	3
146	Fatty acid utilization by young Wistar rats fed a cafeteria diet. Molecular and Cellular Biochemistry, 1992, 118, 67-74.	1.4	9
147	Effect of cold exposure on organ temperatures in Wistar and Zuker fa/fa rat. Journal of Thermal Biology, 1992, 17, 83-88.	1.1	15
148	Changes in alanine and glutamine transport during rat red blood cell maturation. Bioscience Reports, 1992, 12, 47-56.	1.1	5
149	Membrane vesicles from brown adipose tissue: A tool for the study of amino acid transport. The case of L-alanine. Bioscience Reports, 1992, 12, 115-122.	1.1	0
150	L-alanine transport in isolated cells of interscapular brown adipose tissue in rat. Bioscience Reports, 1991, 11, 65-71.	1.1	2
151	Role of substrate availability on net <scp>l</scp> -lactate uptake by liver of fed and 24-h-starved rats. Biochemical Society Transactions, 1990, 18, 995-996.	1.6	0
152	Changes in glycine and leucine transport during red cell maturation in the rat. Bioscience Reports, 1990, 10, 209-216.	1.1	12
153	Cationic and anionic amino acid transport studies in rat red blood cells. Bioscience Reports, 1990, 10, 527-535.	1.1	12
154	Amino Acid Uptake by Liver in Pregnant and Lactating Rats. , 1990, , 287-290.		1
155	Na+-Dependent Alanine Transport in Plasma Membrane Vesicles from Late-Pregnant Rat Livers. Pediatric Research, 1989, 26, 448-451.	1.1	16
156	Free Amino Acid Pools in Rat Tissues Throughout the Lactational Period. Hormone and Metabolic Research, 1989, 21, 189-193.	0.7	2
157	The thermogenic effect of a sucrose gavage on the fa/fa rat. Nutrition Research, 1989, 9, 1407-1413.	1.3	7
158	Altered Ultrastructure of Lactating Rat Mammary Epithelial Cells Induced by Chronic Ethanol Ingestion. Alcoholism: Clinical and Experimental Research, 1989, 13, 128-136.	1.4	13
159	Carrier-mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. FEBS Letters, 1988, 235, 224-228.	1.3	18
160	Alanine Turnover Rate and Its Hepatic Metabolism Are Increased in Midpregnant Rat. Neonatology, 1988, 54, 126-132.	0.9	8
161	Effects of chronic ethanol treatment on amino acid uptake and enzyme activities in the lactating rat mammary gland. Life Sciences, 1987, 40, 1745-1749.	2.0	14
162	Sulphur Amino Acid Levels in Some Tissues of the Rat during Pregnancy and Lactation. Annals of Nutrition and Metabolism, 1987, 31, 47-54.	1.0	4

#	Article	IF	CITATIONS
163	Variations in Free Amino Acids in Tissues of Rats from Birth to Puberty. Annals of Nutrition and Metabolism, 1987, 31, 211-218.	1.0	6
164	Chronic and acute ethanol impair the in vivo glucose uptake by lactating rat mammary gland. Bioscience Reports, 1987, 7, 777-781.	1.1	1
165	Hepatic uptake of gluconeogenic substrates in late-pregnant and mid-lactating rats. Bioscience Reports, 1987, 7, 587-592.	1.1	11
166	Effects of chronic ethanol consumption on lactational performance in rat: Mammary gland and milk composition and pups' growth and metabolism. Pharmacology Biochemistry and Behavior, 1987, 27, 333-339.	1.3	69
167	Tissue amino acid pool changes during the perinatal period of the rat. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 85, 477-480.	0.2	0
168	Urinary amino acid excretion in the pregnant rat. Nutrition Research, 1986, 6, 709-718.	1.3	3
169	Effects of chronic ethanol ingestion on circulating metabolites and liver composition in the lactating rat. General Pharmacology, 1986, 17, 197-202.	0.7	15
170	Development of the gestational plasma hypoaminoacidemia in the rat. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 85, 735-738.	0.7	5
171	Blood Amino Acid Compartmentalization during Pregnancy and Lactation in the Rat. Annals of Nutrition and Metabolism, 1986, 30, 58-65.	1.0	11
172	Essential amino acid splanchnic bed exchanges in the rat: effects of pregnancy and food deprivation. Biochemical Society Transactions, 1986, 14, 1074-1075.	1.6	3
173	Free Amino Acid Pools in Some Tissues of the Pregnant Rat. Hormone and Metabolic Research, 1986, 18, 590-594.	0.7	6
174	Effects of 24-hour starvation period on metabolic parameters of 20-day-old rats. Archives Internationales De Physiologie Et De Biochimie, 1984, 92, 297-303.	0.2	6
175	Arginase Activity during Pregnancy and Lactation. Hormone and Metabolic Research, 1984, 16, 468-470.	0.7	12
176	Body and organ size and composition during late foetal and postnatal development of rat. Comparative Biochemistry and Physiology A, Comparative Physiology, 1983, 75, 597-601.	0.7	10
177	Aspartate- and tyrosine transaminase activities in the organs of the rat during its breeding cycle. Archives Internationales De Physiologie Et De Biochimie, 1983, 91, 109-114.	0.2	0
178	Distribution of amino acids and amino-acid enzymes in whole kidney and renal cortex. Effect of 24-h starvation. Archives Internationales De Physiologie Et De Biochimie, 1983, 91, 255-260.	0.2	3
179	Adenylate Deaminase Activity in the Tissues of the Rat During its Breeding Cycle. Archives Internationales De Physiologie Et De Biochimie, 1983, 91, 51-54.	0.2	0
180	Ontogeny of amino-acid metabolism-enzymes in peripheral tissues of developing rats. Archives Internationales De Physiologie Et De Biochimie, 1983, 91, 43-50.	0.2	12

#	Article	IF	CITATIONS
181	Amino-acid enzyme activities in liver and kidney of developing rats. Archives Internationales De Physiologie Et De Biochimie, 1982, 90, 163-171.	0.2	13
182	Glycogen and Glycogen Enzymes in the Liver and Striated Muscle of Rats under Altered Thyroid States. Hormone and Metabolic Research, 1982, 14, 179-182.	0.7	10
183	Effects of 24 Hour Starvation on Plasma Composition in 19 and 21 Day Pregnant Rats and Their Foetuses. Hormone and Metabolic Research, 1982, 14, 364-371.	0.7	31
184	Glutamine Synthetase Activity in Rat Tissues during Pregnancy and Lactation. Hormone and Metabolic Research, 1982, 14, 419-421.	0.7	7
185	Changes induced in rat plasma composition by lactation. Archives Internationales De Physiologie Et De Biochimie, 1982, 90, 185-190.	0.2	14
186	Effect of short term fasting on plasma composition of lactating rats. Archives Internationales De Physiologie Et De Biochimie, 1981, 89, 217-223.	0.2	5
187	Changes in glutamine synthetase activity in the different organs of developing rats. Archives Internationales De Physiologie Et De Biochimie, 1981, 89, 189-194.	0.2	18
188	Metabolic Effects of Short Term Food Deprivation in the Rat. Hormone and Metabolic Research, 1981, 13, 326-330.	0.7	73
189	Plasma Amino Acids in Hypothyroid and Hypertyroid Rats. Hormone and Metabolic Research, 1981, 13, 38-41.	0.7	7
190	Adenylate Deaminase Activity in the Rat. Effect of 24 Hours of Fasting. Hormone and Metabolic Research, 1981, 13, 264-266.	0.7	12
191	Glutamine Synthetase Activity in the Organs of Fed and 24-Hours Fasted Rats. Hormone and Metabolic Research, 1981, 13, 199-202.	0.7	41
192	Activities of Enzymes Involved in Amino-Acid Metabolism in Developing Rat Placenta. FEBS Journal, 1980, 110, 289-293.	0.2	29
193	Changes in Alanine Transaminase Activity in Several Organs of the Rat Induced by a 24-Hour Fast. Hormone and Metabolic Research, 1980, 12, 505-508.	0.7	16
194	Changes-Induced in Liver and Muscle Glycogen and Glycogen Enzymes by 24-Hour Fasting in the Rat. Hormone and Metabolic Research, 1980, 12, 19-22.	0.7	19
195	Arginase Activity in the Organs of Fed and 24-Hours Fasted Rats. Hormone and Metabolic Research, 1980, 12, 281-282.	0.7	5
196	Effect of stress and sampling site on metabolite concentration in rat plasma . Archives Internationales De Physiologie Et De Biochimie, 1980, 88, 99-105.	0.2	24
197	Plasma Amino-Acid Concentrations During Development in the Rat. Archives Internationales De Physiologie Et De Biochimie, 1980, 88, 443-452.	0.2	9
198	Fasting-induced changes of tyrosine transaminase activity in rat tissues. Revista Española De FisiologÃa, 1980, 36, 21-6.	0.0	0

#	Article	IF	CITATIONS
199	Glycogen Phosphorylase Activities in Sulfonylureas Treated Rats. Hormone and Metabolic Research, 1978, 10, 355-356.	0.7	1