
Zachi I Attia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7040326/publications.pdf Version: 2024-02-01

ΖΛΟΗΙΙΔΤΤΙΛ

#	Article	IF	CITATIONS
1	Current and future implications of the artificial intelligence electrocardiogram: the transformation of healthcare and attendant research opportunities. Cardiovascular Research, 2022, 118, e23-e25.	3.8	4
2	Artificial Intelligence Application in Graves Disease. Mayo Clinic Proceedings, 2022, 97, 730-737.	3.0	3
3	Detection of Left Atrial Myopathy Using Artificial Intelligence–Enabled Electrocardiography. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE120008176.	3.9	10
4	Development of the Al-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis. American Journal of Gastroenterology, 2022, 117, 424-432.	0.4	17
5	Artificial intelligence—electrocardiography to detect atrial fibrillation: trend of probability before and after the first episode. European Heart Journal Digital Health, 2022, 3, 228-235.	1.7	4
6	Artificial Intelligence–Enabled Electrocardiogram for Atrial Fibrillation Identifies Cognitive Decline Risk and Cerebral Infarcts. Mayo Clinic Proceedings, 2022, 97, 871-880.	3.0	6
7	Evaluating atrial fibrillation artificial intelligence for the ED: statistical and clinical implications. American Journal of Emergency Medicine, 2022, 57, 98-102.	1.6	3
8	Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction. European Heart Journal Digital Health, 2022, 3, 238-244.	1.7	8
9	Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an Al algorithm to an electrocardiogram-enabled Digital Stethoscope. European Heart Journal Digital Health, 2022, 3, 373-379.	1.7	10
10	Migraine with aura associates with a higher artificial intelligence: <scp>ECG</scp> atrial fibrillation prediction model output compared to migraine without aura in both women and men. Headache, 2022, 62, 939-951.	3.9	10
11	Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. International Journal of Cardiology, 2021, 326, 114-123.	1.7	25
12	Vascular Aging Detected by Peripheral Endothelial Dysfunction Is Associated With ECGâ€Đerived Physiological Aging. Journal of the American Heart Association, 2021, 10, e018656.	3.7	25
13	Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 2021, 18, 465-478.	13.7	298
14	Electrocardiogram screening for aortic valve stenosis using artificial intelligence. European Heart Journal, 2021, 42, 2885-2896.	2.2	95
15	Artificial Intelligence–Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device. Circulation, 2021, 143, 1274-1286.	1.6	75
16	The 12-lead electrocardiogram as a biomarker of biological age. European Heart Journal Digital Health, 2021, 2, 379-389.	1.7	30
17	Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nature Medicine, 2021, 27, 815-819.	30.7	154
18	Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiology, 2021, 6, 532.	6.1	65

ΖΑСΗΙ Ι ΑΤΤΙΑ

#	Article	IF	CITATIONS
19	An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the â€~Turing test'?. Cardiovascular Digital Health Journal, 2021, 2, 164-170.	1.3	18
20	Deep neural networks learn by using human-selected electrocardiogram features and novel features. European Heart Journal Digital Health, 2021, 2, 446-455.	1.7	9
21	Coronary Microvascular Dysfunction and the Risk of Atrial Fibrillation From an Artificial Intelligence-Enabled Electrocardiogram. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009947.	4.8	4
22	Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. Mayo Clinic Proceedings, 2021, 96, 2081-2094.	3.0	15
23	Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram. Cardiovascular Digital Health Journal, 2021, 2, 282-284.	1.3	3
24	Batch enrollment for an artificial intelligence-guided intervention to lower neurologic events in patients with undiagnosed atrial fibrillation: rationale and design of a digital clinical trial. American Heart Journal, 2021, 239, 73-79.	2.7	21
25	Use of Artificial Intelligence Tools Across Different Clinical Settings. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e008153.	2.2	6
26	Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy. American Journal of Cardiology, 2021, 155, 121-127.	1.6	15
27	The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients. International Journal of Cardiology, 2021, 339, 54-55.	1.7	4
28	Application of artificial intelligence to the electrocardiogram. European Heart Journal, 2021, 42, 4717-4730.	2.2	96
29	Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. International Journal of Cardiology, 2021, 340, 42-47.	1.7	35
30	Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 532-541.	1.0	11
31	Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery. Mayo Clinic Proceedings, 2021, 96, 3062-3070.	3.0	5
32	Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients–The SaMi-Trop cohort. PLoS Neglected Tropical Diseases, 2021, 15, e0009974.	3.0	3
33	Implementation of a fully remote randomized clinical trial with cardiac monitoring. Communications Medicine, 2021, 1, .	4.2	4
34	ECG Al-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial. American Heart Journal, 2020, 219, 31-36.	2.7	50
35	Clinical trial design data for electrocardiogram artificial intelligence-guided screening for low ejection fraction (EAGLE). Data in Brief, 2020, 28, 104894.	1.0	9
36	Digital Health and the Care of the Patient With Arrhythmia. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007953.	4.8	20

ΖΑСΗΙ Ι ΑΤΤΙΑ

#	Article	IF	CITATIONS
37	An Al-ECG algorithm for atrial fibrillation risk: steps towards clinical implementation – Authors' reply. Lancet, The, 2020, 396, 236-237.	13.7	5
38	Artificial Intelligence–Electrocardiography to Predict Incident Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e009355.	4.8	68
39	Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008437.	4.8	81
40	A comprehensive artificial intelligence–enabled electrocardiogram interpretation program. Cardiovascular Digital Health Journal, 2020, 1, 62-70.	1.3	33
41	Survey of current perspectives on consumer-available digital health devices for detecting atrial fibrillation. Cardiovascular Digital Health Journal, 2020, 1, 21-29.	1.3	28
42	Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19. Mayo Clinic Proceedings, 2020, 95, 2464-2466.	3.0	21
43	Artificial Intelligence in Cardiology: Present and Future. Mayo Clinic Proceedings, 2020, 95, 1015-1039.	3.0	127
44	Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007952.	4.8	96
45	Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology, 2020, 75, 722-733.	2.8	183
46	Assessing and Mitigating Bias in Medical Artificial Intelligence. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007988.	4.8	116
47	Digital health innovation in cardiology. Cardiovascular Digital Health Journal, 2020, 1, 6-8.	1.3	6
48	Use of Artificial Intelligence Electrocardiography to Predict Atrial Fibrillation (AF) in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2020, 136, 50-51.	1.4	7
49	An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, The, 2019, 394, 861-867.	13.7	794
50	Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007284.	4.8	213
51	Pragmatic considerations for fostering reproducible research in artificial intelligence. Npj Digital Medicine, 2019, 2, 42.	10.9	27
52	Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. Journal of Cardiovascular Electrophysiology, 2019, 30, 668-674.	1.7	98
53	Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiology, 2019, 4, 428.	6.1	188
54	Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine, 2019, 25, 70-74.	30.7	686

ΖΑСΗΙ Ι ΑΤΤΙΑ

#	Article	IF	CITATIONS
55	Errors of Classification With Potassium Blood Testing: The Variability and Repeatability of Critical Clinical Tests. Mayo Clinic Proceedings, 2018, 93, 566-572.	3.0	10
56	Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study. PLoS ONE, 2018, 13, e0201059.	2.5	28
57	Noninvasive blood potassium measurement using signal-processed, single-lead ecg acquired from a handheld smartphone. Journal of Electrocardiology, 2017, 50, 620-625.	0.9	33
58	Architectural T-Wave Analysis and Identification of On-Therapy Breakthrough Arrhythmic Risk in Type 1 and Type 2 Long-QT Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	11
59	Novel Bloodless Potassium Determination Using a Signalâ€Processed Single‣ead ECG. Journal of the American Heart Association, 2016, 5, .	3.7	59
60	Identification of Concealed and Manifest Long QT Syndrome Using a Novel T Wave Analysis Program. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	21
61	Electrocardiographic predictors of coronary microvascular dysfunction in patients with non-obstructive coronary artery disease: Utility of a novel T wave analysis program. International Journal of Cardiology, 2016, 203, 601-606.	1.7	8
62	Studying accelerated cardiovascular ageing in Russian adults through a novel deep-learning ECG biomarker. Wellcome Open Research, 0, 6, 12.	1.8	8
63	Machine learning aids clinical decision making in patients presenting with angina and non-obstructive coronary artery disease. European Heart Journal Digital Health, 0, , .	1.7	3