Peter C M Van Zijl

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7040003/publications.pdf
Version: 2024-02-01

Three－dimensional tracking of axonal projections in the brain by magnetic resonance imaging．Annals
of Neurology，1999，45，265－269．

2 Fiber tracking：principles and strategies â€＂a technical review．NMR in Biomedicine，2002，15，468－480．
2.8

1,859

3	Fiber Tractấ＂based Atlas of Human White Matter Anatomy．Radiology，2004，230，77－87．	7.3	1，727
4	Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template．Neurolmage， 2008，40，570－582．	4.2	1，528
5	Reproducibility of quantitative tractography methods applied to cerebral white matter．Neurolmage， 2007，36，630－644．	4.2	1，464
6	Tract probability maps in stereotaxic spaces：Analyses of white matter anatomy and tract－specific quantification．Neurolmage，2008，39，336－347．	4.2	1，293
7	Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI． Nature Medicine，2003，9，1085－1090．	30.7	999

8 Family income，parental education and brain structure in children and adolescents．Nature $8 \quad$ Neuroscience，2015，18，773－778．

9 DtiStudio：Resource program for diffusion tensor computation and fiber bundle tracking．Computer
$9 \quad$ Methods and Programs in Biomedicine，2006，81，106－116．

10 Chemical exchange saturation transfer（CEST）：What is in a name and what isn＇t？．Magnetic Resonance in Medicine，2011，65，927－948．
3.0

903
11 Determining the longitudinal relaxation time（T1）of blood at 3．0 Tesla．Magnetic Resonance in
Medicine，2004，52，679－682．
$3.0 \quad 594$

12 Water saturation shift referencing（WASSR）for chemical exchange saturation transfer（CEST） experiments．Magnetic Resonance in Medicine，2009，61，1441－1450．
3.0

555
Amide proton transfer（APT）contrast for imaging of brain tumors．Magnetic Resonance in Medicine，
$2003,50,1120-1126$ ．

Imaging cortical association tracts in the human brain using diffusionâ€tensorâ€based axonal tracking．
3.0

534 Magnetic Resonance in Medicine，2002，47，215－223．

> Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter. Neurolmage, $2008,43,447-457$.
4.2

486

16 Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem．Neurolmage，2001，14，723－735．
4.2
19
20

> Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nature Medicine, $2011,17,130-134$.
30.7

448

Functional magnetic resonance imaging based on changes in vascular space occupancy. Magnetic
3.0

Resonance in Medicine, 2003, 50, 263-274.
428

Chemical exchange saturation transfer imaging and spectroscopy. Progress in Nuclear Magnetic
Resonance Spectroscopy, 2006, 48, 109-136.
7.5

22 Water diffusion and acute stroke. Magnetic Resonance in Medicine, 1994, 31, 154-163.
3.0

396

32 Amide proton transfer imaging of human brain tumors at 3T. Magnetic Resonance in Medicine, 2006, 56,
3.0

308
585-592.

33 Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging.
Magnetic Resonance in Medicine, 2008, 60, 842-849.
3.0

304

Optical coherence tomography reflects brain atrophy in multiple sclerosis: A fourâ€year study. Annals
of Neurology, 2015, 78, 801-813.

Detection of the Ischemic Penumbra Using pH-Weighted MRI. Journal of Cerebral Blood Flow and
Metabolism, 2007, 27, 1129-1136.
4.3

296

Resonance in Medicine, 2012, 68, 1764-1773.

37	Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magnetic Resonance in Medicine, 2006, 55, 836-847.	3.0	288
38	Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neurolmage, 2010, 52, 1289-1301.	4.2	277
39	Multi-contrast human neonatal brain atlas: Application to normal neonate development analysis. Neurolmage, 2011, 56, 8-20.	4.2	277
40	Routine clinical brain MRI sequences for use at 3.0 Tesla. Journal of Magnetic Resonance Imaging, 2005, 22, 13-22.	3.4	272
41	Diffusion Tensor MR Imaging of the Brain and White Matter Tractography. American Journal of Roentgenology, 2002, 178, 3-16.	2.2	270
42	Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neurolmage, 2013, 77, 114-124.	4.2	266
43	Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magnetic Resonance in Medicine, 2004, 51, 945-952.	3.0	258

44 Quantitative proton MR spectroscopic imaging of the human brain. Magnetic Resonance in Medicine,
$1996,35,356-363$.
Diffusion Weighting by the Trace of the Diffusion Tensor within a Single Scan. Magnetic Resonance in
Medicine, 1995, 33, 41-52.
APTâ€weighted MRI: Techniques, current neuro applications, and challenging issues. Journal of Magnetic
Resonance Imaging, 2019, 50, 347-364. $\quad 3.4$

48 | Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and |
| :--- |
| analysis of the field-dependent saturation spectrum. Neurolmage, 2018, 168, 222-241. |

Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magnetic
Resonance in Medicine, 2007, 58, 592-597.
50 Mechanism of magnetization transfer during on-resonance water saturation. A new approach to
MRI-detectable pH nanosensors incorporated intoÂhydrogels for inÂvivo sensing of transplanted-cell
viability. Nature Materials, 2013, 12, 268-275.

New â€œmulticolorâ€•polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast

57 Threeâ€dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. Journal of Magnetic Resonance Imaging, 2013, 38, 1119-1128.

Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging.
Neurolmage, 2009, 47, 618-627.

In vivo threeâ€dimensional wholeâ€brain pulsed steadyâ€state chemical exchange saturation transfer at 7 T.
59 In vivo threeâ€dimensional wholeâ€orain pulsed steadyâ
$3.0 \quad 176$

On the relationship between seedâ€based and ICAâ€based measures of functional connectivity. Magnetic
Resonance in Medicine, 2011, 66, 644-657.
3.0

172

61 Analysis of noise effects on DTIâ€based tractography using the bruteâ€force and multiâ€ROI approach.
Vagnetic Resonance in Medicine, 2004, 52, 559-565.

62 From the diffusion coefficient to the diffusion tensor. NMR in Biomedicine, 2002, 15, 431-434.
2.8

165

63	MR tracking of transplanted cells with â€œpositive contrastâ€ousing manganese oxide nanoparticles. Magnetic Resonance in Medicine, 2008, 60, 1-7.	3.0	164
64	Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magnetic Resonance in Medicine, 2012, 67, 42-49.	3.0	162
65	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	7.1	158

Application of Phase-Modulated CLEAN Chemical EXchange Spectroscopy (CLEANEX-PM) to Detect
Waterâ^'Protein Proton Exchange and Intermolecular NOEs. Journal of the American Chemical Society,
1997, 119, 6203-6204.
Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor
microimaging. Neurolmage, 2003, 20, 1639-1648.

Dynamic Glucose-Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Clioma
1.8

153
Patients. Tomography, 2015, 1, 105-114.
$4.2 \quad 153$ microimaging. Neurolmage, 2003, 20, 1639-1648.
DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magnetic
Resonance Imaging, 2019, 64, 160-170.
On the precision of diffusion/perfusion imaging by gradient sensitization. Magnetic Resonance in
Medicine, 1992, 23, 122-129.

78 Human brain atlas for automated region of interest selection in quantitative susceptibility mapping:
Application to determine iron content in deep gray matter structures. Neurolmage, 2013, 82, 449-469.
Orientation-independent diffusion imaging without tensor diagonalization: Anisotropy definitions
based on physical attributes of the diffusion ellipsoid. Journal of Magnetic Resonance Imaging, 1999, 9,
$804-813$.
Regional white matter change in pre-symptomatic Huntington's disease: A diffusion tensor imaging
study. Psychiatry Research - Neuroimaging, 2005, 140,55-62.

$81 \quad$| Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magnetic Resonance |
| :--- |
| in Medicine, 2010, 64, 638-644. |

135

83 | Applying amide proton transferâ€weighted MRI to distinguish pseudoprogression from true progression |
| :--- |
| in malignant gliomas. Journal of Magnetic Resonance Imaging, 2016, 44, 456-462. |

Gradient-enhanced HMQC and HSQC spectroscopy. Applications to 15 N -labeled Mnt repressor. Journal of the American Chemical Society, 1991, 113, 9688-9690.

Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR
3.0

128
85 diffusion imaging. Magnetic Resonance in Medicine, 1991, 19, 327-332.

Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy.
5.3

126 Annals of Neurology, 1994, 36, 595-608.

Predicting IDH mutation status in grade II gliomas using amide proton transferâ€weighted (APTw) MRI.
Magnetic Resonance in Medicine, 2017, 78, 1100-1109.

Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia.
Magnetic Resonance in Medicine, 2007, 57, 405-410.
3.0

122

Functional Analysis of Aquaporin-1 Deficient Red Cells. Journal of Biological Chemistry, 1996, 271,
1309-1313.

91	Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(ru) and of a dendrimer-poly(ru) model for nucleic acid delivery and pharmacology. Magnetic Resonance in Medicine, 2003, 49, 998-1005.	3.0	117
92	Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Magnetic Resonance in Medicine, 2014, 71, 1798-1812.	3.0	115
93	Measurement of tissue oxygen extraction ratios from venous bloodT2: Increased precision and validation of principle. Magnetic Resonance in Medicine, 2001, 46, 282-291.	3.0	112
94	Sickle Cell Disease: Continuous Arterial Spin-labeling Perfusion MR Imaging in Children. Radiology, 2003, 227, 567-574.	7.3	111
95	Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magnetic Resonance in Medicine, 1997, 37, 825-832.	3.0	109
96	In vivo visualization of human neural pathways by magnetic resonance imaging. Annals of Neurology, 2000, 47, 412-414.	5.3	109
97	MRI Reporter Genes. Journal of Nuclear Medicine, 2008, 49, 1905-1908.	5.0	109
98	Quantitative Susceptibility Mapping Suggests Altered Brain Iron in Premanifest Huntington Disease. American Journal of Neuroradiology, 2016, 37, 789-796.	2.4	107
99	Proton NMR spectroscopy of solvent-saturable resonances: A new approach to study pH effectsin Situ. Magnetic Resonance in Medicine, 1998, 40, 36-42.	3.0	106

100 \begin{tabular}{l}
Two-Compartment Exchange Model for Perfusion Quantification Using Arterial Spin Tagging. Journal

of Cerebral Blood Flow and Metabolism, 2001, 21, 440-455.

Novel approach to the measurement of absolute cerebral blood volume using

vascular-space-occupancy magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 54,

$1403-1411$.
\end{tabular}

102 In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magnetic Resonance in Medicine, 2012, 67, 1106-1113.
3.0

104

103 Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1500-1516.
$4.3 \quad 104$

Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR
104 Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clinical Cancer Research, 2019, 25,
7.0

104 552-561.

105 Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi-echo VASO fMRI at 1.5 and 3.0 T. Magnetic Resonance in Medicine, 2005, 53, 808-816.
3.0

103

106 Highâ€屯hroughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media and Molecular Imaging, 2010, 5, 162-170.

A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition. Magnetic Resonance in Medicine, 1998, 40, 511-516.
109 Venous blood effects in spin-echo fMRI of human brain. Magnetic Resonance in Medicine, 1999, 42,
In Vivo proton spectroscopy and spectroscopic imaging of \{1-13C\}-glucose and its metabolic products.113 Determination of Oxygen Extraction Ratios by Magnetic Resonance Imaging. Journal of Cerebral Blood
fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Human
Brain Mapping, 2009, 30, 1705-1722.
Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magnetic Resonance in Medicine, 2015, 74, 1556-1563. 115
116 Correction of BO susceptibility induced distortion in diffusion-weighted images usinglarge-deformation diffeomorphic metric mapping. Magnetic Resonance Imaging, 2008, 26, 1294-1302.
117 Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR in 2.8 92
Biomedicine, 2008, 21, 489-497.
4.2 92
$118 \quad \begin{aligned} & \text { Mapping magnetic susceptibility } \\ & \text { Neurolmage, 2012, 62, 314-330. }\end{aligned}$
119 Measuring Random Microscopic Motion of Water in Tissues with MR Imaging. Journal of Computer
Assisted Tomography, 1991, 15, 19-25.0.9914.291
Three-Dimensional Diffusion Tensor Magnetic Resonance Microimaging of Adult Mouse Brain and Hippocampus. Neurolmage, 2002, 15, 892-901. 120An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI121 Anvestigation. NMR in Biomedicine, 2006, 19, 1043-1054.2.891
Wholeâ€brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in
122 glioma patients using lowâ€power steadyâ€state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. Journal of Magnetic Resonance Imaging, 2016, 44, 41-50.3.491
123 Application to the Consensus Zinc Finger Peptide CP-1. Journal of Magnetic Resonance Series B, 199 1.6 88
110, 96-101.

Automated fiber tracking of human brain white matter using diffusion tensor imaging. Neurolmage,
$127 \quad$ Short
Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosisẫ \dagger.
Noninvasive Detection of Cerebral Hypoperfusion and Reversible Ischemia from Reductions in the
129 Magnetic Resonance Imaging Relaxation Time, T2. Journal of Cerebral Blood Flow and Metabolism, 1998,
High bâ€value qâ€space diffusionâ€weighted MRI of the human cervical spinal cord in vivo: Feasibility and application to multiple sclerosis. Magnetic Resonance in Medicine, 2008, 59, 1079-1089.
3.0
135 NMR of partially aligned liquids: magnetic susceptibility anisotropies and dielectric properties.135 Accounts of Chemical Research, 1984, 17, 172-180.

Separation of intramolecular NOE and exchange peaks in water exchange spectroscopy using spin-echo filters. Journal of Biomolecular NMR, 1996, 7, 77-82.

Defining an Acidosis-Based Ischemic Penumbra from pH-Weighted MRI. Translational Stroke Research,
146 2012, 3, 76-83.

147 Lesion Heterogeneity on High-Field Susceptibility MRI Is Associated with Multiple Sclerosis Severity. American Journal of Neuroradiology, 2016, 37, 1447-1453.

Correlation of the Average Water Diffusion Constant with Cerebral Blood Flow and Ischemic Damage
148 after Transient Middle Cerebral Artery Occlusion in Cats. Journal of Cerebral Blood Flow and
4.3 Metabolism, 1996, 16, 881-891.

Magnetization transfer contrastâ $€$ "suppressed imaging of amide proton transfer and relayed nuclear
149 overhauser enhancement chemical exchange saturation transfer effects in the human brain at 7T. Magnetic Resonance in Medicine, 2016, 75, 88-96.

Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in
150 endocannabinoid signaling across species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4500-4505.
Blood oxygenation levelâ€dependent (BOLD) total and extravascular signal changes and
$\begin{aligned} & \text { १" }\langle\mathrm{i}\rangle \mathrm{R}\langle\mid \mathrm{i}\rangle\langle\mathrm{sub}\rangle 2\langle\mid \mathrm{sub}\rangle^{*} \text { in human visual cortex at } 1.5,3.0 \text { and } 7.0 \mathrm{~T} \text {. NMR in Biomedicine, } 2011,2 \\ & 152 \text { Brain metabolite alterations and cognitive dysfunction in early Huntington's disease. Movement } \\ & \text { Disorders, 2012, 27, 895-902. }\end{aligned}$

153 Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral

Single <sup> 19<|sup>F Probe for Simultaneous Detection of Multiple Metal lons Using miCEST MRI.
154 Journal of the American Chemical Society, 2015, 137, 78-81.
13.7

70

155 Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic
susceptibility at 7 tesla. Sleep Medicine, 2016, 22, 75-82.

Quantitative magnetic resonance imaging assessment of cerebral ischemia in rat using on-resonance T1
156 in the rotating frame. Magnetic Resonance in Medicine, 1999, 42, 268-276.
3.0

69

Natural Dâ€glucose as a biodegradable MRI relaxation agent. Magnetic Resonance in Medicine, 2014, 72,
$157 \quad$ Natural 823 .828.
3.0

69

Prefrontal Brain Network Connectivity Indicates Degree of Both Schizophrenia Risk and Cognitive
4.3

Dysfunction. Schizophrenia Bulletin, 2014, 40, 653-664.

Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian
lineâ€shape fitting CEST method. Magnetic Resonance in Medicine, 2019, 81, 69-78.
3.0

Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis.
160 Multiple Sclerosis Journal, 2013, 19, 427-435.
3.0

68

Measurement of $\langle\mathrm{i}\rangle \mathrm{T}\langle\mid \mathrm{i}\rangle\langle$ sub $\rangle 1\langle |$ sub \rangle and $\langle\mathrm{i}\rangle T\langle\mid \mathrm{i}\rangle\langle\mathrm{sub}\rangle 2\langle |$ sub \rangle in the cervical spinal cord at 3 tesla.
161 Measurement of $\langle i\rangle T\langle\mid i\rangle\langle$ sub $\rangle 1\langle |$ sub \rangle and $\langle i\rangle T\langle\mid 1\rangle\langle$
3.0

67

Metal Ion Sensing Using Ion Chemical Exchange Saturation Transfer ¹⁹F Magnetic
Resonance Imaging. Journal of the American Chemical Society, 2013, 135, 12164-12167.
171 High field localized proton spectroscopy in small volumes: greatly improved localization andshimming using shielded strong gradients. Magnetic Resonance in Medicine, 1989, 10, 256-265.
177 Correlation of rapid changes in the average water diffusion constant and the concentrations of 177 lactate and ATP breakdown products during global ischemia in cat brain. Magnetic Resonance in 3.0 60
Medicine, 1995, 34, 343-352.

Noninvasive functional imaging of cerebral blood volume with vascularâ€spaceâ€occupancy (VASO) MRI.

181	Susceptibility tensor imaging (STI) of the brain. NMR in Biomedicine, 2017, 30, e3540.	2.8	59
182	Magnetic Resonance Spectroscopy and Spectroscopic Imaging for the Study of Brain Metabolism. Annals of the New York Academy of Sciences, 1997, 820, 75-96.	3.8	58
183	Unique patterns of diffusion directionality in rat brain tumors revealed by highâ€resolution diffusion tensor MRI. Magnetic Resonance in Medicine, 2007, 58, 454-462.	3.0	58
184	A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1, 977-982.	22.5	58
185	High-resolution isotropic 3D diffusion tensor imaging of the human brain. Magnetic Resonance in Medicine, 2002, 47, 837-843.	3.0	57
186	Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: Feasibility and application. Magnetic Resonance in Medicine, 2006, 56, 866-875.	3.0	57
187	Water Exchange Filter (WEX Filter) for Nuclear Magnetic Resonance Studies of Macromolecules. Journal of the American Chemical Society, 1994, 116, 11982-11984.	13.7	55
188	MRI biosensor for protein kinase A encoded by a single synthetic gene. Magnetic Resonance in Medicine, 2012, 68, 1919-1923.	3.0	55
189	In vivo imaging of phosphocreatine with artificial neural networks. Nature Communications, 2020, 1072.	12.8	55

Graded Reduction of Cerebral Blood Flow in Rat as Detected by the Nuclear Magnetic Resonance
Relaxation Time T₂: A Theoretical and Experimental Approach. Journal of Cerebral Blood
Flow and Metabolism, 2000, 20, 316-326.

191 | Measurement of absolute arterial cerebral blood volume in human brain without using a contrast |
| :--- |
| agent. NMR in Biomedicine, 2011, 24, 1313-1325. |

192 Quantitative theory for the longitudinal relaxation time of blood water. Magnetic Resonance in Medicine, 2016, 76, 270-281.
3.0

54

193 Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility. Neurolmage, 2019, 191, 337-349.

Implementation of vascularâ€spaceâ€occupancy MRI at 7T. Magnetic Resonance in Medicine, 2013, 69,
3.0

52
1003-1013.
$4.2 \quad 54$

A diaCEST MRI approach for monitoring liposomal accumulation in tumors. Journal of Controlled
9.9

52
195 Release, 2014, 180, 51-59.

Multiple acquisitions with global inversion cycling (MAGIC): A multislice technique for vascular-space-occupancy dependent fMRI. Magnetic Resonance in Medicine, 2004, 51, 9-15.
199
200

NMR Study of Rapidly Exchanging Backbone Amide Protons in Staphylococcal Nuclease and the
199 Correlation with Structural and Dynamic Properties. Journal of the American Chemical Society, 1997,
13.7

119, 6844-6852.

200 Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neurolmage,
4.2

2019, 188, 380-390.
50

201 Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer
4.2
imaging of the human brain. Neurolmage, 2019, 189, 202-213.

Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical
203

> CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR in Biomedicine, 2016, 29, 806-816.

204 CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget, 2016, 7, 6369-6378.
1.8

49
205 Intervoxel Heterogeneity of Event-Related Functional Magnetic Resonance Imaging Responses as a Function of 11 Weighting. Neurolmage, 2002, 17, 943-955.
$4.2 \quad 48$
$206 \begin{aligned} & \text { Origin and minimization of residual motionâ } € \text { related artifacts in navigatorâ } € \text { corrected segmented } \\ & \text { diffusionâ€weighted EPI of the human brain. Magnetic Resonance in Medicine, 2002, 47, 818-822. }\end{aligned}$

207 Suppression of lipid artifacts in amide proton transfer imaging. Magnetic Resonance in Medicine, 2005, 54, 222-225.
3.0

48

208 Evaluation of human brain tumor heterogeneity using multiple <i>T</i>₁â€based MRI signal weighting approaches. Magnetic Resonance in Medicine, 2008, 59, 336-344.
3.0

48
Quantitative magnetization transfer characteristics of the human cervical spinal cord in vivo:
Application to Adrenomyeloneuropathy. Magnetic Resonance in Medicine, 2009, 61, 22-27.

Application to Adrenomyeloneuropathy. Magnetic Resonance in Medicine, 2009, 61, 22-27.
Consensus statement on current and emerging methods for the diagnosis and evaluation of
cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.
4.3

48
210

MRI contrast-dose relationship of manganese(III)tetra(4-sulfonatophenyl) porphyrin with human
xenograft tumors in nude mice at 2.0 T. Magnetic Resonance Imaging, 1992, 10, 919-928.

Detection of rapidly exchanging compounds using onâ€resonance frequencyâ€łabeled exchange (FLEX) transfer. Magnetic Resonance in Medicine, 2012, 68, 1048-1055.
3.0

47

212

213 Elevated arteriolar cerebral blood volume in prodromal Huntington's disease. Movement Disorders,
$2014,29,396-401$.
3.9

47

Hematocrit and oxygenation dependence of blood ¹H<sub>2<|sub>O <i> $T<|i\rangle\langle$ sub $\rangle 1<\mid$ sub \rangle
at 7 tesla. Magnetic Resonance in Medicine, 2013, 70, 1153-1159.
Measurement of waterâ $€^{\prime \prime}$ amide proton exchange rates in the denatured state of staphylococcal
217 nuclease by a magnetization transfer technique. Proteins: Structure, Function and Bioinformatics,
er

Highly efficient magnetic labelling allows MRI tracking of the homing of stem cellâ€ederived
extracellular vesicles following systemic delivery. Journal of Extracellular Vesicles, 2021, 10, e12054.
227 InverseT2 contrast at 1.5 Tesla between gray matter and white matter in the occipital lobe of normal
227 adult human brain. Magnetic Resonance in Medicine, 2001, 46, 401-406.
42

\square Magnetization transfer weighted imaging in the upper cervical spinal cord using cerebrospinal fluid228 as intersubject normalization reference (MTCSF imaging). Magnetic Resonance in Medicine, 2005, 54,3.0201-206.
$\begin{array}{ll}229 & \text { Direct saturation MR } \\ \text { 2009, 62, 384-393. }\end{array}$
3.042
CEST MRI of 3 â $€$ Oâ€methylâ€Đâ€glucose uptake and accumulation in brain tumors. Magnetic Resonance in 3.0 42 Medicine, 2019, 81, 1993-2000.<scp>d<|scp>â€glucose weighted chemical exchange saturation transfer (glucoCEST)â€based dynamic
231 glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients.Magnetic Resonance in Medicine, 2020, 84, 247-262.
Magnetic resonance imaging of glycogen using its magnetic coupling with water. Proceedings of the 7.1
235 Magnetic Resonance Diffusion Tensor Microimaging Reveals a Role for Bcl-x in Brain Development and2016, 35, 2040-2050.
244 In situ changes in purine nucleotide and n-acetyl concentrations upon inducing global ischemia in cat brain. Magnetic Resonance in Medicine, 1993, 29, 381-385.
245 Fast measurement of blood<i> </i>₁ in the human jugular vein at 3 Tesla. Magnetic
245 Resonance in Medicine, 2011, 65, 1297-1304.
3.0 362.8Threeâ€dimensional wholeâ€brain perfusion quantification using pseudoâ€ \in entinuous arterial spin labeling2.8function. NMR in Biomedicine, 2014, 27, 116-128.
$247 \begin{aligned} & \text { Onâ€resonance variable delay multipulse scheme for imaging of fastâ€e } \\ & \text { macromolecules. Magnetic Resonance in Medicine, 2017, } 77,730-739 \text {. }\end{aligned}$3.035Single-shot localized echo-planar imaging (STEAM-EPI) at 4.7 tesla. Magnetic Resonance in Medicine,3.034
Biophysical Research Communications, 1990, 169, 383-390.

Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magnetic Resonance

Non-invasive temperature mapping using temperature-responsive water saturation shift referencing
(T-WASSR) MRI. NMR in Biomedicine, 2014, 27, 320-331.

Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magnetic Resonance in Medicine, 2018, 79, 1001-1009.

Pulseqâ€CEST: Towards multiâ€site multiâ€vendor compatibility and reproducibility of CEST experiments using an openâ€source sequence standard. Magnetic Resonance in Medicine, 2021, 86, 1845-1858.

Imaging of shifted stimulated echoes and multiple spin echoes. Magnetic Resonance in Medicine, 1997, 37, 336-340.

Rapid threeâ€dimensional diffusion MRI facilitates the study of acute stroke in mice. Magnetic Resonance in Medicine, 2001, 46, 183-188.

MR diffusion tensor imaging documented arcuate fasciculus lesion in a patient with normal repetition performance. Aphasiology, 2002, 16, 897-902.

Magnetization transfer enhanced vascularâ€spaceâ€occupancy (MTâ€VASO) functional MRI. Magnetic Resonance in Medicine, 2009, 61, 944-951.

Prefrontal executive function associated coupling relates to Huntington's disease stage. Cortex, 2013, 49, 2661-2673.

Wholeâ€brain arteriography and venography: Using improved velocityâ€selective saturation pulse trains.
261 Magnetic Resonance in Medicine, 2018, 79, 2014-2023.

Quantitative theory for the transverse relaxation time of blood water. NMR in Biomedicine, 2020, 33, e4207.

Torsional angles in vinylarenes determined by high-field NMR spectroscopy. Journal of the American
263 Chemical Society, 1988, 110, 4900-4905.
In Vivo Determination of Absolute Cerebral Blood Volume Using Hemoglobin as a Natural Contrast
264 Agent: An MRI Study Using Altered Arterial Carbon Dioxide Tension. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 809-817.

265 Effect of inflow of fresh blood on vascularâ€spaceâ€occupancy (VASO) contrast. Magnetic Resonance in Medicine, 2009, 61, 473-480.

Accounting for the role of hematocrit in betweenâ€subject variations of MRlâ€derived baseline cerebral hemodynamic parameters and functional BOLD responses. Human Brain Mapping, 2018, 39, 344-353.
3.6

Highâ€resolution creatine mapping of mouse brain at 11.7 T using nonâ€steadyâ€state chemical exchange
2.8 saturation transfer. NMR in Biomedicine, 2019, 32, e4168.

Quantitative Susceptibility Mapping of Brain Iron and \hat{I}^{2}-Amyloid in MRI and PET Relating to Cognitive Performance in Cognitively Normal Older Adults. Radiology, 2021, 298, 353-362.

Abnormal Grey Matter Arteriolar Cerebral Blood Volume in Schizophrenia Measured With 3D Inflow-Based Vascular-Space-Occupancy MRI at 7T. Schizophrenia Bulletin, 2017, 43, sbw109.
4.3

28

| 271 | Quantification of wholeâ€brain oxygenation extraction fraction and cerebral metabolic rate of oxygen
 consumption in adults with sickle cell anemia using individual T₂ấbased oxygenation
 calibrations. Magnetic Resonance in Medicine, 2020, 83, 1066-1080. | 3.0 |
| :--- | :--- | :--- | :--- | 28

278 Effect of transit times on quantification of cerebral blood flow by the FAIR T1-difference approach.Magnetic Resonance in Medicine, 1999, 42, 890-894.
279 Landmark-referenced voxel-based analysis of diffusion tensor images of the brainstem white matter
279 tracts. Neurolmage, 2009, 44, 906-913.$4.2 \quad 26$Transverse water relaxation in whole blood and erythrocytes at $3 \mathrm{~T}, 7 \mathrm{~T}, 9.4 \mathrm{~T}, 11.7 \mathrm{~T}$ and 16.4T;280 determination of intracellular hemoglobin and extracellular albumin relaxivities. MagneticResonance Imaging, 2017, 38, 234-249.
GlucoCEST imaging with onâ€resonance
Resonance in Medicine, 2019, 81, 47-56. 26
Wholeâ€brain amide CEST imaging at 3T with a steadyâ€state radial MRI acquisition. Magnetic Resonance in 3.0 26 Medicine, 2021, 86, 893-906.
13.7 25
$283 \begin{aligned} & \text { Optimized Excitation and Automation for High-Resolution NMR Usin } \\ & \text { Journal of the American Chemical Society, 1996, 118, 55 10-5511. }\end{aligned}$3.025
284 Multiple tuning of birdcage resonators. Magnetic Resonance in Medicine, 1997, 37, 243-251.
285 Imaging of Endogenous Exchangeable Proton Signals in the Human Brain Using Frequency Labeled 3.0 25 Exchange Transfer Imaging. Magnetic Resonance in Medicine, 2013, 69, 966-973.MRI detection of bacterial brain abscesses and monitoring of antibiotic treatment using bacCEST.Magnetic Resonance in Medicine, 2018, 80, 662-671.oldest-old. Neurobiology of Aging, 2018, 64, 68-75.
289
Prospective acceleration of parallel RF transmissionâ€based 3D chemical exchange saturation transfer imaging with compressed sensing. Magnetic Resonance in Medicine, 2019, 82, 1812-1821.
3.0

25

Extradomain-B Fibronectin-Targeted Dextran-Based Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Probe for Detecting Pancreatic Cancer. Bioconjugate Chemistry, 2019, 30, 1425-1433.
3.6

25

290

Arterial Input Functions and Tissue Response Curves in Dynamic Clucose-Enhanced (DGE) Imaging:
1.8

Comparison between glucoCEST and Blood Clucose Sampling in Humans. Tomography, 2018, 4, 164-171.

Single-shot diffusion-weighted trace imaging on a clinical scanner. Magnetic Resonance in Medicine, 1998, 40, 622-628.
3.0

Vascular space occupancy (VASO) cerebral blood volumeâ€weighted MRI identifies hemodynamic
293 impairment in patients with carotid artery disease. Journal of Magnetic Resonance Imaging, 2009, 29,
$3.4 \quad 24$
718-724.

294 CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1579-1591.
$2.0 \quad 24$
295 Highâ€sensitivity CEST mapping using a spatiotemporal correlationâ€enhanced method. Magnetic

NMR studies of brain 13C-glucose uptake and metabolism: Present status. Magnetic Resonance Imaging, 23
296 1995, 13, 1213-1221.

Study of the Spatial Correlation Between Neuronal Activity and BOLD fMRI Responses Evoked by
297 Sensory and Channelrhodopsin-2 Stimulation in the Rat Somatosensory Cortex. Journal of Molecular
2.3 Neuroscience, 2014, 53, 553-61.

298 Cerebral blood volume mapping using Fourierâ€transformâ€"based velocityâ€selective saturation pulse trains. Magnetic Resonance in Medicine, 2019, 81, 3544-3554.
3.0

23
APOE4 moderates effects of cortical iron on synchronized default mode network activity in
cognitively healthy oldâ€aged adults. Alzheimer's and Dementia: Diagnosis, Assessment and Disease

Monitoring, 2020, 12, e12002. \quad\begin{tabular}{l}
Proton magnetic resonance spectroscopy of small regions (1 mL) localized inside superficial human

tumors. A clinical feasibility study. NMR in Biomedicine, 1990, 3, 227-232.

\quad

Quantitative measurement of cerebral blood volume using velocityâ€selective pulse trains. Magnetic

Resonance in Medicine, 2017, 77, 92-101.
\end{tabular}$\quad 2.4$

307	Intervoxel heterogeneity of event-related functional magnetic resonance imaging responses as a function of T(1) weighting. Neurolmage, 2002, 17, 943-55.	4.2	21
308	Image contrast using the secondary and tertiary eigenvectors in diffusion tensor imaging. Magnetic Resonance in Medicine, 2006, 55, 439-449.	3.0	20
309	Advanced MRI strategies for assessing spinal cord injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 85-101.	1.8	20
310	Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neurolmage, 2021, 236, 118071.	4.2	20
311	Measurement of parenchymal extravascular $\langle\mathrm{i}\rangle \mathrm{R}\langle\mid \mathrm{i}\rangle\langle\mathrm{sub}\rangle 2\langle \|$ sub \rangle^{*} and tissue oxygen extraction fraction using multiâ€echo vascular space occupancy MRI at 7â€\%oT. NMR in Biomedicine, 2015, 28, 264-271.	2.8	19
312	Susceptibilityâ€based analysis of dynamic gadolinium bolus perfusion MRI. Magnetic Resonance in Medicine, 2015, 73, 544-554.	3.0	19
313	Biophysical Characterization of Human Protamine-1 as a Responsive CEST MR Contrast Agent. ACS Macro Letters, 2015, 4, 34-38.	4.8	19
314	Differential Changes in Functional Connectivity of Striatum-Prefrontal and Striatum-Motor Circuits in Premanifest Huntingtonâ ${ }^{\mathrm{TM}}$ s Disease. Neurodegenerative Diseases, 2019, 19, 78-87.	1.4	19
315	Retinotopic mapping in the human visual cortex using vascular space occupancy-dependent functional magnetic resonance imaging. NeuroReport, 2005, 16, 1635-1640.	1.2	18

316 Detection of dynamic substrate binding using MRI. Scientific Reports, 2017, 7, 10138.317 CEST MRI monitoring of tumor response to vascular disrupting therapy using high molecular weight
dextrans. Magnetic Resonance in Medicine, 2019, 82, 1471-1479.
3.0 18Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. Neurolmage,NOrmalized MAgnetization Ratio (NOMAR) filtering for creation of tissue selective contrast maps.
Learned Proximal Networks for Quantitative Susceptibility Mapping. Lecture Notes in Computer
Science, 2020, 12262, 125-135.

328 Measurement of arteriolar blood volume in brain tumors using MRI without exogenous contrast agent administration at 7T. Journal of Magnetic Resonance Imaging, 2016, 44, 1244-1255.
$3.4 \quad 13$

Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer
329 magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosensors and Bioelectronics, 2019,
$10.1 \quad 13$ 141, 111442.

330 Extracellular vesicles reveal abnormalities in neuronal iron metabolism in restless legs syndrome.
Sleep, 2019, 42, .
$1.1 \quad 13$
The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of
glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807.

331 glioblastoma. Magnetic Resonance in Medicine, 2019, 81, 3798-3807.

332 Age-Related Alterations in Brain Perfusion, Venous Oxygenation, and Oxygen Metabolic Rate of Mice: A
17-Month Longitudinal MRI Study. Frontiers in Neurology, 2020, 11, 559.
2.4

13

333 Background field removal using a region adaptive kernel for quantitative susceptibility mapping of

334 Molecular imaging of deoxycytidine kinase activity using deoxycytidine-enhanced CEST MRI. Cancer
Research, 2019, 79, canres.3565.2018.
0.9

12
Background field removal for susceptibility mapping of human brain with large susceptibility
variations. Magnetic Resonance in Medicine, 2019, 81, 2025-2037.
335 variations. Magnetic Resonance in Medicine, 2019, 81, 2025-2037.

6 Whole-Brain Functional and Diffusion Tensor MRI in Human Participants with Metallic Orthodontic
Braces. Radiology, 2020, 294, 149-157.
7.3

12
336
$3.0 \quad 12$

Fast whole brain MR imaging of dynamic susceptibility contrast changes in the cerebrospinal fluid
(cDSC MRI). Magnetic Resonance in Medicine, 2020, 84, 3256-3270.
(cDSC MRI). Magnetic Resonance in Medicine, 2020, 84, 3256-3270.

Mechanism and quantitative assessment of saturation transfer for waterâ€based detection of the
aliphatic protons in carbohydrate polymers. Magnetic Resonance in Medicine, 2021, 85, 1643-1654.
3.0

12
Threeâ€dimensional wholeâ€brain mapping of cerebral blood volume and venous cerebral blood volume
339 using Fourier transformâ€"based velocityâ€selective pulse trains. Magnetic Resonance in Medicine, 2021,
$3.0 \quad 12$
86, 1420-1433.
Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLoS ONE, 2020, 15, e0244003.
2.5

Time domain removal of irrelevant magnetization in chemical exchange saturation transfer Zâ€spectra.
Magnetic Resonance in Medicine, 2013, 70, 547-555.
3.0

Salicylic Acidâ€Based Polymeric Contrast Agents for Molecular Magnetic Resonance Imaging of Prostate Cancer. Chemistry - A European Journal, 2018, 24, 7235-7242.
3.3

Quantitative assessment of cerebral venous blood T <sub $>2</$ sub> in mouse at 11.7 T : Implementation, optimization, and age effect. Magnetic Resonance in Medicine, 2018, 80, 521-528.

Optimization of phaseâ€contrast MRI for the estimation of global cerebral blood flow of mice at 11.7T.

Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. , 1999, 45, 265.

Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local 348 discrepancy between an atlas and a target image to capture the features of anatomic brain MRI. Neurolmage: Clinical, 2013, 3, 202-211.

349 In vivo imaging of paraCEST agents using frequency labeled exchange transfer <scp>MRI</scp>. Magnetic Resonance in Medicine, 2014, 71, 286-293.

Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging. Magnetic Resonance in Medicine, 2016, 75, 238-248.

351 In vivo magnetic resonance imaging and spectroscopy. Technological advances and opportunities for
351 applications continue to abound. Journal of Magnetic Resonance, 2019, 306, 55-65.

Increased cerebral blood volume in small arterial vessels is aÂcorrelate of amyloid-1̂2ấ"related cognitive
352 decline. Neurobiology of Aging, 2019, 76, 181-193.
3.1

10

353 Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis
with on resonance variable delay multiple pulse (onVDMP) CEST MRI. Neurolmage, 2020, $204,116245$.

Language Mapping Using T2-Prepared BOLD Functional MRI in the Presence of Large Susceptibility
Artifactsâ€"Initial Results in Patients With Brain Tumor and Epilepsy. Tomography, 2017, 3, 105-113.
1.8

210

Diffuse Abnormality of Low to Moderately Organized White Matter in Schizophrenia. Brain
Connectivity, 2011, 1, 511-519.

A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume,
356 blood flow, and blood oxygenation-weighted signals during functional stimulation. Neurolmage,
$4.2 \quad 8$
2017, 147, 976-984.
357 Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury. Neuroradiology, 2017, 59, 747-758.

MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions. American Journal of Neuroradiology, 2021, 42, 1396-1402.
Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention.
361 Theranostics, 2021, $11,6240-6250$.

Dynamic contrastâ€enhanced CEST MRI using a low molecular weight dextran. NMR in Biomedicine, 2021,
, e4649. , e4649.
<scp>T₂â€oximetryâ€"</scp>based cerebral venous oxygenation mapping using
363 <scp>Fourierâ€transform</scp>â€"based <scp>velocityâ€selective</scp>pulse trains. Magnetic Resonance $\quad 3.0$ in Medicine, 2022, 88, 1292-1302.

364 A framework on surface-based connectivity quantification for the human brain. Journal of

365 \begin{tabular}{l}
Molecular Imaging of CXCL12 Promoter-driven HSV1-TK Reporter Gene Expression. Biotechnology and

Bioprocess Engineering, 2018, 23, 208-217.

\quad

Five-year longitudinal changes in quantitative spinal cord MRI in multiple sclerosis. Multiple

366

Sclerosis Journal, 2021, 27,549-558.
\end{tabular}

367 High field NMR, a powerful new analytical tool. TrAC - Trends in Analytical Chemistry, 1987, 6, 23-26.
$11.4 \quad 5$

368 Impaired response of cerebral oxygen metabolism to visual stimulation in Huntingtonâ $€^{\mathrm{TM}}$ s disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1119-1130.
4.3

5
369 Detection of electrostatic molecular binding using the water proton signal. Magnetic Resonance in
Three-dimensional acquisition of cerebral blood volume and flow responses during functional $370 \quad$ stimulation in a single scan. Neurolmage, 2014, 103, 533-541.
$4.2 \quad 4$

371 Spectroscopic measurements of metabolic fluxes. Nature Biomedical Engineering, 2020, 4, 254-256.
$22.5 \quad 3$

Singleâ€step calculation of susceptibility through multiple orientation sampling. NMR in Biomedicine,
372 2021, 34, e4517.
$2.8 \quad 3$

373 APT-weighted MRI Can Be an Early Marker for Demyelination. Radiology, 2021, 299, 435-437. 3

374 Quantitative magnetic resonance imaging assessment of cerebral ischemia in rat using onâ€
$3.0 \quad 3$
in the rotating frame. Magnetic Resonance in Medicine, 1999, 42, 268-276.
Dynamic Susceptibility Contrast MRI at 7 T: Tail-Scaling Analysis and Inferences about Field Strength
Dependence. Tomography, 2017, 3, 74-78.

Measurement of waterâ€"amide proton exchange rates in the denatured state of staphylococcal
376 nuclease by a magnetization transfer technique. Proteins: Structure, Function and Bioinformatics,
2.6

2
1997, 28, 325-332.

Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magnetic Resonance in Medicine, 2001, 46, 699-705.Characterization of Mouse Brain and Its Development using Diffusion Tensor Imaging and381 Computational Techniques. Annual International Conference of the IEEE Engineering in Medicine and

