Ivan I Shevchenko

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7039977/publications.pdf
Version: 2024-02-01

1 The Lidov-Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy. Astrophysics and Space Science Library, 2017, , .3 Lyapunov exponents in resonance multiplets. Physics Letters, Section A: General, Atomic and SolidState Physics, 2014, 378, 34-42.2.144On the chaotic rotation of planetary satellites: The Lyapunov spectra and the maximum Lyapunov
5 Three-lane and multilane signatures of planets in planetesimal discs. Monthly Notices of the Royal
Astronomical Society: Letters, 2016, 463, L22-L25. Three-lane and multilane signatures of planets in plater
Astronomical Society: Letters, 2016, 463, L22-L25. 3.3 392.537Rotational dynamics of planetary satellites: A survey of regular and chaotic behavior. Icarus, 2005,176, 224-234.
1.0 37$7 \quad$ Planetary dynamics in the system $\hat{l} \pm$ Centauri: The stability diagrams. Astronomy Letters, 2012, 38, 581-588.
SPIRAL PATTERNS IN PLANETESIMAL CIRCUMBINARY DISKS. Astrophysical Journal, 2015, 805, 38.4.59 On the recurrence and Lyapunov time scales of the motion near the chaos border. Physics Letters,$9 \quad$ Section A: General, Atomic and Solid State Physics, 1998, 241, 53-60.Scripta, 1998, 57, 185-191.
2.5 34
Marginal Resonances and Intermittent Behaviour in the Motion in the Vicinity of a Separatrix. Physica
2.1 33
Hamiltonian intermittency and LÃ@vy flights in the three-body problem. Physical Review E, 2010, 81,
11066216.
12 On the stability of circumbinary planetary systems. Astronomy Letters, 2016, 42, 474-481.1.032
13 Habitability Properties of Circumbinary Planets. Astronomical Journal, 2017, 153, 273. 4.7 32
14 CHAOTIC ZONES AROUND GRAVITATING BINARIES. Astrophysical Journal, 2015, 799, 8.4.531
15 The Kepler map in the three-body problem. New Astronomy, 2011, 16, 94-99. 1.8 30
19 LYAPUNOV AND DIFFUSION TIMESCALES IN THE SOLAR NEIGHBORHOOD. Astrophysical Journal, 2011, 733,
29.

On the chaotic rotation of planetary satellites: The Lyapunov exponents and the energy. Astronomy
and Astrophysics, 2003, 410, 749-757.

The width of a chaotic layer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008,
$372,808-816$.

22 Lyapunov exponents in the HÃ@non-Heiles problem. JETP Letters, 2003, 77, 642-646.
1.4

The Separatrix Algorithmic Map: Application to the Spin-Orbit Motion. Celestial Mechanics and
Dynamical Astronomy, 1999, 73, 259-268.

Observations and Theoretical Analysis of Lightcurves of Natural Satellites of Planets. Solar System
Research, 2002, 36, 248-259.
0.7

19

25 Geometry of a chaotic layer. Journal of Experimental and Theoretical Physics, 2000, 91, 615-625.
0.9

18

Maximum Lyapunov Exponents for Chaotic Rotation of Natural Planetary Satellites. Cosmic Research, 2002, 40, 296-304.
0.6

17

27 Chaotic dynamics around cometary nuclei. Icarus, 2018, 307, 391-399.
2.5

17

28 Dynamical Chaos in Planetary Systems. Astrophysics and Space Science Library, 2020, , .
2.7

16
29 On the rotational dynamics of Prometheus and Pandora. Celestial Mechanics and Dynamical
Astronomy, 2008, 101, 31-47.

Adiabatic chaos in the Prometheus-Pandora system. Monthly Notices of the Royal Astronomical
4.4

1531 Chaotic Zones around Rotating Small Bodies. Astronomical Journal, 2017, 153, 272.
4.7

15

32 On the maximum Lyapunov exponent of the motion in a chaotic layer. JETP Letters, 2004, 79, 523-528.
1.4

14

Intermittent Trajectories in the 3/1 Jovian Resonance. Celestial Mechanics and Dynamical Astronomy, 1997, 68, 163-175.
1.4

13

The disruption of three-body gravitational systems: lifetime statistics. Monthly Notices of the Royal
Astronomical Society, 2010, 408, 1623-1627.
4.4

Isentropic perturbations of a chaotic domain. Physics Letters, Section A: General, Atomic and Solid
State Physics, 2004, 333, 408-414.
2.1

10

Algorithms for normalization of Hamiltonian systems by means of computer algebra. Computer
38 Physics Communications, 1993, 77, 11-18.
7.5

9

The shapes and rotational dynamics of minor planetary satellites. Solar System Research, 2006, 40, 393-399.
$0.7 \quad 8$

40 The Lyapunov exponents in the dynamics of triple star systems. Astronomy Reports, 2013, 57, 429-439.
$0.9 \quad 8$
Correlations in area preserving maps: A Shannon entropy approach. Physica D: Nonlinear Phenomena,
$2020,402,132235$.

The dynamical temperature and the standard map. Physica A: Statistical Mechanics and Its Applications,

```
43 Simulations of the Dynamics of the Debris Disks in the Systems Kepler-16, Kepler-34, and Kepler-35.
```

Astronomy Letters, 2018, 44, 119-125.
$1.0 \quad 6$

44 Dynamical environments of MU69 and similar objects. Icarus, 2021, 357, 114178.
2.5

6

45 Lyapunov and Clearing Timescales in Planetary Chaotic Zones. Astronomical Journal, 2020, 160, 212.
4.7

6

46 Long-Term Dynamics of Planetesimals in Planetary Chaotic Zones. Astronomy Letters, 2020, 46, 774-782.
1.0

6

47	Hyperboloidal precession of a dynamically symmetric satellite. Construction of normal forms of the Hamiltonian. Celestial Mechanics and Dynamical Astronomy, 1995, 62, 289-304.	1.4	5
48	On the Lyapunov exponents of the asteroidal motion subject to resonances and encounters. Proceedings of the International Astronomical Union, 2006, 2, 15-30.	0.0	5
49	Circumbinary Planetary Systems in the Solar Neighborhood: Stability and Habitability. Astronomy Letters, 2019, 45, 620-626.	1.0	5

50 Spectra of Winding Numbers of Chaotic Asteroidal Motion. , 1996, , 311-314.
5

51 On the Critical Phenomena in the Dynamics of Asteroids. , 1999, , 383-386. 5

ORBITAL RESONANCES AND THE SEPARATRIX ALGORITHMIC MAP. Advanced Series in Astrophysics and
$0.1 \quad 5$
Cosmology, 2000, , 599-608.

53 Kepler map. Scholarpedia Journal, 2018, 13, 33238.
0.35

```
    Chaotic asteroidal trajectories exhibiting multiple bursts of eccentricity: A statistical analysis.
    Symposium - International Astronomical Union, 1996, 172, 183-186.
```

56 Stability of the multiple star system 1 î UMa (ADS 7114). Astronomy Reports, 2014, 58, 640-649.
0.9

57 Tidal Decay of Circumbinary Planetary Systems. Astronomical Journal, 2018, 156, 52.
4.7

On verification of the asymptotic model of the first kind. Astrophysics and Space Science, 1993, 202, 45-56.

59 Chaotic Asteroidal Dynamics and Maximum Lyapunov Exponents. Solar System Research, 2003, 37, 74-82.
$0.7 \quad 3$

Symbolic computation of the Birkhoff normal form in the problem of stability of the triangular
libration points. Computer Physics Communications, 2008, 178, 665-672.

On reverberation and cross-correlation estimates of the size of the broad-line region in active
galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2008, 389, 478-488.
4.4

3

62 The Separatrix Algorithmic Map: Application to the Spin-Orbit Motion. , 1999, , 259-268.
63 Algorithms of numeric deduction of analytical expressions. SIGSAM Bulletin: A Quarterly Publication
of the Special Interest Group on Symbolic \& Algebraic Manipulation, 1993, 27, 1-3.chaotic diffusion. Computer Physics Communications, 2020, 246, 106868.

Rapid spectral variability of active nuclei of galaxies. Amplitudes of variations in lines. Astrofizika,
$0.0 \quad 1$
1988, 28, 35-42.

Numeric Deduction in Symbolic Computation. Application to Normalizing Transformations. Journal of Symbolic Computation, 1997, 24, 103-111.
69 Sungrazing Comets. Astrophysics and Space Science Library, 2017, , 105-115. 2.7

1

The Separatrix Algorithmic Map: Application to The Spin-Orbit Motion. International Astronomical
Union Colloquium, 1999, 172, 259-268.

On The Critical Phenomena in The Dynamics of Asteroids. International Astronomical Union Colloquium, 1999, 172, 383-386.

75 The â€œstill pointâ€•cosmology. Symposium - International Astronomical Union, 2005, 201, 514-515.
$0.1 \quad 0$

76 On BLR Size Estimates in Reverberation Models. Proceedings of the International Astronomical Union, 2009, 5, 209-209.

How do the small planetary satellites rotate?. Proceedings of the International Astronomical Union,
2009, 5, 167-170.

The XXVII general assembly of the IAU: The central event of the international year of astronomy. Solar
System Research, 2010, 44, 348-353.

Planetary Dynamics in the $\hat{I} \pm$ Centauri System: Lyapunov Spectra and Long-term Behaviour. Proceedings
of the International Astronomical Union, 2011, 7, 450-451.
0.0

0

80 International forum â€œAsteroids, Comets, Meteors 2012â€: Solar System Research, 2013, 47, 141-145.
0.7

0

81 Dynamical Essence and Historical Background. Astrophysics and Space Science Library, 2017, , 1-11.
2.7

Averaging and Normalization in Celestial Mechanics. Astrophysics and Space Science Library, 2017, , 13-26.

Classical Results. Astrophysics and Space Science Library, 2017, , 27-56.
2.7

0

84 The Theory Advances. Astrophysics and Space Science Library, 2017, , 57-89.
2.7
o

85 Asteroids and Kuiper Belt Objects in Inclined Orbits. Astrophysics and Space Science Library, 2017, ,
117-137.

86 The Role in Sculpting Exoplanetary Systems. Astrophysics and Space Science Library, 2017, , 139-159.
2.7

0

87 Applications in Stellar Dynamics. Astrophysics and Space Science Library, 2017, , 161-169.
2.7

0

Dynamical environments of MU69: a state of chaotic clearing. Proceedings of the International Astronomical Union, 2018, 14, 227-229.

Resonant multi-lane patterns in circumbinary young debris disks. Proceedings of the International
Astronomical Union, 2018, 14, 230-231.

General Assembly of the International Astronomical Union in Vienna: in the Lead-Up to the Centenary
of the IAU. Solar System Research, 2019, 53, 146-150.

Dynamical environments of relativistic binaries: The phenomenon of resonance shifting. Physical
Review D, 2019, 100, .

92 Habitable worlds of merging stars. International Journal of Astrobiology, 2020, 19, 500-504.
1.6

Prometheus and Pandora, the champions of dynamical chaos. Thirty Years of Astronomical Discovery
With UKIRT, 2008, , 285-292.

Numerical Tools for Studies of Dynamical Chaos. Astrophysics and Space Science Library, 2020, , 35-51.
2.7

Planetary Systems of Multiple Stars. Astrophysics and Space Science Library, 2020, , 305-324.
2.7
2.7
2.7

Effects of
$273-289$.

Extents of Chaotic Domains. Astrophysics and Space Science Library, 2020, , 95-117.

Diffusion Timescales. Astrophysics and Space Science Library, 2020, , 77-94.

Planetary Architecture: Stability, Packing and Ranging. Astrophysics and Space Science Library, 2020, , 235-271.

101 Chaotic Behaviour. Astrophysics and Space Science Library, 2020, , 3-34.

102 Lyapunov Timescales. Astrophysics and Space Science Library, 2020, , 53-76.
2.7

0

103 Orbital Dynamics of Minor Bodies. Astrophysics and Space Science Library, 2020, , 147-208.

104 Rotational Dynamics. Astrophysics and Space Science Library, 2020, , 125-146.
2.7

0

106 Exoplanets: An Overview. Astrophysics and Space Science Library, 2020, , 219-233.

