Nobuyuki Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7039792/publications.pdf

Version: 2024-02-01

144 papers 7,612 citations

50170 46 h-index 83 g-index

147 all docs

147 docs citations

times ranked

147

10428 citing authors

#	Article	IF	CITATIONS
1	Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. Journal of Clinical Investigation, 2012, 122, 1022-1036.	3.9	730
2	Ezrin/Radixin/Moesin (ERM) Proteins Bind to a Positively Charged Amino Acid Cluster in the Juxta-Membrane Cytoplasmic Domain of CD44, CD43, and ICAM-2. Journal of Cell Biology, 1998, 140, 885-895.	2.3	544
3	PPARÂ coactivator $1\text{\^A}/\text{ERR}$ ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12378-12383.	3.3	330
4	Oxytocin receptor-deficient mice developed late-onset obesity. NeuroReport, 2008, 19, 951-955.	0.6	240
5	Volume-sensitive Chloride Channels Involved in Apoptotic Volume Decrease and Cell Death. Journal of Membrane Biology, 2006, 209, 21-29.	1.0	219
6	Dual action of isoprenols from herbal medicines on both PPARÎ ³ and PPARα in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Letters, 2002, 514, 315-322.	1.3	196
7	Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochemical and Biophysical Research Communications, 2004, 316, 149-157.	1.0	185
8	Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. Journal of Lipid Research, 2011, 52, 873-884.	2.0	175
9	Loss of Claudins 2 and 15 From Mice Causes Defects in Paracellular Na+ Flow and Nutrient Transport in Gut and Leads to Death from Malnutrition. Gastroenterology, 2013, 144, 369-380.	0.6	153
10	Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Scientific Reports, 2016, 5, 18013.	1.6	143
11	Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. American Journal of Physiology - Cell Physiology, 2012, 302, C463-C472.	2.1	138
12	Overexpression and Ribozyme-mediated Targeting of Transcriptional Coactivators CREB-binding Protein and p300 Revealed Their Indispensable Roles in Adipocyte Differentiation through the Regulation of Peroxisome Proliferator-activated Receptor \hat{I}^3 . Journal of Biological Chemistry, 2002, 277, 16906-16912.	1.6	133
13	Diosgenin, the Main Aglycon of Fenugreek, Inhibits LXRα Activity in HepG2 Cells and Decreases Plasma and Hepatic Triglycerides in Obese Diabetic Mice. Journal of Nutrition, 2011, 141, 17-23.	1.3	124
14	Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism. PPAR Research, 2010, 2010, 1-9.	1.1	122
15	Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Molecular Nutrition and Food Research, 2010, 54, 1596-1608.	1.5	120
16	A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Letters, 2003, 536, 232-236.	1.3	116
17	Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E676-E687.	1.8	106
18	Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Research, 2008, 18, 558-565.	5.7	104

#	Article	IF	CITATIONS
19	Inflammation induced by RAW macrophages suppresses <i>UCP1 </i> /i>mRNA induction via ERK activation in 10T1/2 adipocytes. American Journal of Physiology - Cell Physiology, 2013, 304, C729-C738.	2.1	102
20	Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese–diabetic mice. Journal of Nutritional Biochemistry, 2012, 23, 768-776.	1.9	101
21	Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2008, 366, 219-225.	1.0	92
22	Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiological Genomics, 2005, 22, 269-282.	1.0	91
23	Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes. Biochemical and Biophysical Research Communications, 2005, 337, 440-445.	1.0	91
24	Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARÎ ³ activation. Biochemical and Biophysical Research Communications, 2009, 390, 1372-1376.	1.0	89
25	Proinflammatory cytokine interleukin- $\hat{\Pi}^2$ suppresses cold-induced thermogenesis in adipocytes. Cytokine, 2016, 77, 107-114.	1.4	88
26	Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors. BioFactors, 2000, 13, 103-109.	2.6	87
27	Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochemical and Biophysical Research Communications, 2008, 369, 333-338.	1.0	81
28	Capsaicin inhibits the production of tumor necrosis factor \hat{l}_{\pm} by LPS-stimulated murine macrophages, RAW 264.7: a PPAR \hat{l}^3 ligand-like action as a novel mechanism. FEBS Letters, 2004, 572, 266-270.	1.3	79
29	Functional Food Targeting the Regulation of Obesity-Induced Inflammatory Responses and Pathologies. Mediators of Inflammation, 2010, 2010, 1-8.	1.4	78
30	Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. International Journal of Molecular Medicine, 2006, 18, 147.	1.8	76
31	Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Letters, 2003, 550, 190-194.	1.3	75
32	Chloride Channel Inhibition Prevents ROSdependentApoptosis Induced by Ischemia-Reperfusion in Mouse Cardiomyocytes. Cellular Physiology and Biochemistry, 2005, 16, 147-154.	1.1	71
33	Dysfunction of regulatory volume increase is a key component of apoptosis. FEBS Letters, 2006, 580, 6513-6517.	1.3	71
34	Lack of <scp>TRPV</scp> 2 impairs thermogenesis in mouse brown adipose tissue. EMBO Reports, 2016, 17, 383-399.	2.0	71
35	Luteolin, a foodâ€derived flavonoid, suppresses adipocyteâ€dependent activation of macrophages by inhibiting JNK activation. FEBS Letters, 2009, 583, 3649-3654.	1.3	70
36	αâ€Linolenic acidâ€derived metabolites from gut lactic acid bacteria induce differentiation of antiâ€inflammatory M2 macrophages through G proteinâ€coupled receptor 40. FASEB Journal, 2018, 32, 304-318.	0.2	69

3

#	Article	IF	Citations
37	Diosgenin attenuates inflammatory changes in the interaction between adipocytes and macrophages. Molecular Nutrition and Food Research, 2010, 54, 797-804.	1.5	65
38	10â€oxoâ€12(<i>Z</i>)â€octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB Journal, 2017, 31, 5036-5048.	0.2	65
39	Potent PPARα Activator Derived from Tomato Juice, 13-oxo-9,11-Octadecadienoic Acid, Decreases Plasma and Hepatic Triglyceride in Obese Diabetic Mice. PLoS ONE, 2012, 7, e31317.	1.1	62
40	Soymorphin-5, a soy-derived $\hat{1}\frac{1}{4}$ -opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPAR $\hat{1}\pm$ systems in diabetic KKA ^y mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E433-E440.	1.8	61
41	9â€oxoâ€10(E),12(E)â€octadecadienoic acid derived from tomato is a potent PPAR α agonist to decrease triglyceride accumulation in mouse primary hepatocytes. Molecular Nutrition and Food Research, 2011, 55, 585-593.	1.5	60
42	10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPAR $\hat{1}^3$ and stimulates adipogenesis. Biochemical and Biophysical Research Communications, 2015, 459, 597-603.	1.0	59
43	Taurine improves obesityâ€induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Molecular Nutrition and Food Research, 2013, 57, 2155-2165.	1.5	52
44	Activation of peroxisome proliferator-activated receptor- \hat{l}_{\pm} (PPAR \hat{l}_{\pm}) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes. Biochemical and Biophysical Research Communications, 2011, 410, 1-6.	1.0	51
45	Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARÎ 3 agonist. Biochemical Journal, 2011, 438, 111-119.	1.7	48
46	Involvement of mast cells in adipose tissue fibrosis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E247-E255.	1.8	48
47	The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. Journal of Biological Chemistry, 2017, 292, 9175-9190.	1.6	48
48	Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D ₂ <i>inâ€fvivo</i> . FEBS Journal, 2010, 277, 1410-1419.	2.2	46
49	Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1022-E1032.	1.8	46
50	DHA attenuates postprandial hyperlipidemia via activating PPARÎ \pm in intestinal epithelial cells. Journal of Lipid Research, 2013, 54, 3258-3268.	2.0	46
51	Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. BioFactors, 2008, 33, 25-32.	2.6	45
52	Natural compounds regulate energy metabolism by the modulating the activity of lipidâ€sensing nuclear receptors. Molecular Nutrition and Food Research, 2013, 57, 20-33.	1.5	44
53	Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPARα, promotes energy consumption and reduces visceral fat deposition in rats. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 800-807.	1.1	43
54	Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KKâ€Ay mice. BioFactors, 2009, 35, 442-448.	2.6	42

#	Article	IF	CITATIONS
55	Biochemical and Physiological Characteristics of Fat Cell Journal of Nutritional Science and Vitaminology, 2001, 47, 1-12.	0.2	40
56	Activation of peroxisome proliferator-activated receptor- \hat{l}_{\pm} enhances fatty acid oxidation in human adipocytes. Biochemical and Biophysical Research Communications, 2011, 407, 818-822.	1.0	39
57	Bixin Activates PPARα and Improves Obesity-Induced Abnormalities of Carbohydrate and Lipid Metabolism in Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 11952-11958.	2.4	39
58	Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Molecular Nutrition and Food Research, 2011, 55, 1791-1797.	1.5	37
59	Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflugers Archiv European Journal of Physiology, 2016, 468, 1527-1540.	1.3	37
60	Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophageâ€mediated inflammation in adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700064.	1.5	36
61	Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α. Journal of Lipid Research, 2015, 56, 254-265.	2.0	35
62	Posttranscriptional Regulation of α-Catenin Expression Is Required for Wnt Signaling in L Cells. Biochemical and Biophysical Research Communications, 2000, 277, 691-698.	1.0	34
63	Brazilian propolis-derived components inhibit TNF- \hat{l} ±-mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 695-703.	1.1	33
64	CIC-3-independent Sensitivity of Apoptosis to Cl ^{â€"} Channel Blockers in Mouse Cardiomyocytes. Cellular Physiology and Biochemistry, 2005, 15, 263-270.	1.1	32
65	Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes. Lipids, 2015, 50, 1093-1102.	0.7	32
66	Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase. Journal of Biological Chemistry, 2010, 285, 6109-6117.	1.6	31
67	Crystal Structures of Protein Glutaminase and Its Pro Forms Converted into Enzyme-Substrate Complex. Journal of Biological Chemistry, 2011, 286, 38691-38702.	1.6	28
68	The Apoptotic Volume Decrease Is an Upstream Event of MAP Kinase Activation during Staurosporine-Induced Apoptosis in HeLa Cells. International Journal of Molecular Sciences, 2012, 13, 9363-9379.	1.8	27
69	Roles of Aquaporin-3 Water Channels in Volume-Regulatory Water Flow in a Human Epithelial Cell Line. Journal of Membrane Biology, 2005, 208, 55-64.	1.0	23
70	Activation of maxi-anion channel by protein tyrosine dephosphorylation. American Journal of Physiology - Cell Physiology, 2009, 297, C990-C1000.	2.1	23
71	Auraptene suppresses inflammatory responses in activated <scp>RAW</scp> 264 macrophages by inhibiting p38 mitogenâ€activated protein kinase activation. Molecular Nutrition and Food Research, 2013, 57, 1135-1144.	1.5	23
72	Plasma metabolites of dietary flavonoids after combination meal consumption with onion and tofu in humans. Molecular Nutrition and Food Research, 2014, 58, 310-317.	1.5	23

#	Article	IF	Citations
73	4â€Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3‣1 Cells. Lipids, 2016, 51, 787-795.	0.7	22
74	HCO3-independent rescue from apoptosis by stilbene derivatives in rat cardiomyocytes. FEBS Letters, 2005, 579, 517-522.	1.3	21
75	Xanthoangelol and 4â€hydroxyderrcin suppress obesityâ€induced inflammatory responses. Obesity, 2016, 24, 2351-2360.	1.5	21
76	Iron deficiency induces autophagy and activates Nrf2 signal through modulating p62/SQSTM . Biomedical Research, 2017, 38, 343-350.	0.3	21
77	Recognition System for Dietary Fatty Acids in the Rat Small Intestine. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1428-1432.	0.6	20
78	Volume-sensitive outwardly rectifying chloride channel in white adipocytes from normal and diabetic mice. American Journal of Physiology - Cell Physiology, 2010, 298, C900-C909.	2.1	20
79	A Phytolâ€Enriched Diet Activates PPARâ€Î± in the Liver and Brown Adipose Tissue to Ameliorate Obesityâ€Induced Metabolic Abnormalities. Molecular Nutrition and Food Research, 2018, 62, e1700688.	1.5	20
80	Thermostability of Refolded Ovalbumin and S-Ovalbumin. Bioscience, Biotechnology and Biochemistry, 2005, 69, 922-931.	0.6	19
81	Long-Chain Free Fatty Acid Profiling Analysis by Liquid Chromatography–Mass Spectrometry in Mouse Treated with Peroxisome Proliferator-Activated Receptor α Agonist. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2288-2293.	0.6	19
82	13â€Oxoâ€9(<i>Z</i>),11(<i>E</i>),15(<i>Z</i>)â€octadecatrienoic Acid Activates Peroxisome Proliferatorâ€Activated Receptor γ in Adipocytes. Lipids, 2015, 50, 3-12.	0.7	19
83	Comparative and Stability Analyses of 9- and 13-Oxo-octadecadienoic Acids in Various Species of Tomato. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1621-1624.	0.6	18
84	î ³ -Mangostin from <i>Garcinia Mangostana</i> Pericarps as a Dual Agonist That Activates Both PPARα and PPARδ. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2430-2435.	0.6	18
85	Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP. Biochemical and Biophysical Research Communications, 2017, 483, 718-724.	1.0	18
86	The Recognition System of Dietary Fatty Acids by the Rat Small Intestinal Cells. Bioscience, Biotechnology and Biochemistry, 1995, 59, 479-481.	0.6	17
87	Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro. Glia, 2004, 47, 46-57.	2.5	17
88	Dehydroabietic acid activates peroxisome proliferatorâ€activated receptorâ€Î³ and stimulates insulinâ€dependent glucose uptake into 3T3â€L1 adipocytes. BioFactors, 2011, 37, 309-314.	2.6	16
89	Phenolic compounds from leaves of <i>Casimiroa edulis</i> showed adipogenesis activity. Bioscience, Biotechnology and Biochemistry, 2014, 78, 296-300.	0.6	16
90	Transition of serine residues to the d-form during the conversion of ovalbumin into heat stable S-ovalbumin. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 145-149.	1.4	16

#	Article	IF	Citations
91	Inhibitory Effect of Monoacylglycerol on Fatty Acid Uptake into Rat Intestinal Epithelial Cells. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1441-1443.	0.6	15
92	Yamogenin in fenugreek inhibits lipid accumulation through the suppression of gene expression in fatty acid synthesis in hepatocytes. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1231-1236.	0.6	15
93	Food-Derived Compounds Apigenin and Luteolin Modulate mRNA Splicing of Introns with Weak Splice Sites. IScience, 2019, 22, 336-352.	1.9	15
94	Influence of fatty alcohol and other fatty acid derivatives on fatty acid uptake into rat intestinal epithelial cells. Lipids, 2001, 36, 21-26.	0.7	14
95	Double dioxygenation by mouse 8S-lipoxygenase: Specific formation of a potent peroxisome proliferator-activated receptor \hat{l}_{\pm} agonist. Biochemical and Biophysical Research Communications, 2005, 338, 136-143.	1.0	14
96	Dietary factors evoke thermogenesis in adipose tissues. Obesity Research and Clinical Practice, 2014, 8, e533-e539.	0.8	14
97	9â€Oxoâ€10(<i>E</i>),12(<i>Z</i>),15(<i>Z</i>)â€Octadecatrienoic Acid Activates Peroxisome Proliferatorâ€Activated Receptor α in Hepatocytes. Lipids, 2015, 50, 1083-1091.	0.7	14
98	\hat{l}^2 -Cryptoxanthin Induces UCP-1 Expression via a RAR Pathway in Adipose Tissue. Journal of Agricultural and Food Chemistry, 2019, 67, 10595-10603.	2.4	14
99	The dipeptidyl peptidaseâ€4 (<scp>DPP</scp> â€4) inhibitor teneligliptin enhances brown adipose tissue function, thereby preventing obesity in mice. FEBS Open Bio, 2018, 8, 1782-1793.	1.0	13
100	Dill seed extract improves abnormalities in lipid metabolism through peroxisome proliferatorâ€activated receptorâ€Î± (<scp>PPAR</scp> â€Î±) activation in diabetic obese mice. Molecular Nutrition and Food Research, 2013, 57, 1295-1299.	1.5	12
101	Evaluation of canine T-cell dependent antibody response to the primary and secondary immunization with keyhole limpet hemocyanin. Journal of Toxicological Sciences, 2013, 38, 571-579.	0.7	12
102	A combination of soy isoflavones and cello-oligosaccharides changes equol/ <i>O</i> -desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1632-1635.	0.6	12
103	Theobromine enhances absorption of cacao polyphenol in rats. Bioscience, Biotechnology and Biochemistry, 2014, 78, 2059-2063.	0.6	11
104	Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway. Biochemical and Biophysical Research Communications, 2016, 478, 1317-1322.	1.0	11
105	Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARÎ ³ Activation. Lipids, 2017, 52, 657-664.	0.7	11
106	Elucidation of the mechanism of interaction between <i>Klebsiella pneumoniae</i> pullulanase and cyclodextrin. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1115-1123.	1.1	11
107	Genome Science of Lipid Metabolism and Obesity. Forum of Nutrition, 2009, 61, 25-38.	3.7	10
108	Proteinâ€Engineering Study of Contribution of Conceivable <scp>D</scp> â€Serine Residues to the Thermostabilization of Ovalbumin under Alkaline Conditions. Chemistry and Biodiversity, 2010, 7, 1634-1643.	1.0	10

7

#	Article	IF	Citations
109	Development of a Novel PPAR \hat{I}^3 Ligand Screening System Using Pinpoint Fluorescence-Probed Protein. Bioscience, Biotechnology and Biochemistry, 2011, 75, 337-341.	0.6	10
110	Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice. Bioscience, Biotechnology and Biochemistry, 2017, 81, 2209-2211.	0.6	10
111	<scp> < scp>â€Ornithine and <scp> < scp>â€ ysine stimulate gastrointestinal motility via transient receptor potential vanilloid 1. Molecular Nutrition and Food Research, 2017, 61, 1700230.</scp></scp>	1.5	10
112	Ischemia-Induced Enhancement of CFTR Expression on the Plasma Membrane in Neonatal Rat Ventricular Myocytes. The Japanese Journal of Physiology, 2003, 53, 357-365.	0.9	10
113	Oleyl Alcohol Inhibits Intestinal Long-Chain Fatty Acid Absorption in Rats Journal of Nutritional Science and Vitaminology, 2000, 46, 302-308.	0.2	9
114	Activation of peroxisome proliferator-activated receptor- \hat{l}_{\pm} (PPAR \hat{l}_{\pm}) in proximal intestine improves postprandial lipidemia in obese diabetic KK-Ay mice. Obesity Research and Clinical Practice, 2013, 7, e353-e360.	0.8	9
115	Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Bioscience, Biotechnology and Biochemistry, 2015, 79, 82-87.	0.6	9
116	Sulforaphene attenuates multinucleation of pre-osteoclasts by suppressing expression of cell–cell fusion-associated genes <i>DC</i>	0.6	9
117	Dynamic Mechanism for the Serpin Loop Insertion as Revealed by Quantitative Kinetics. Journal of Molecular Biology, 2005, 348, 409-418.	2.0	8
118	Signalling Events Employed in the Hypertonic Activation of Cation Channels in HeLa Cells. Cellular Physiology and Biochemistry, 2007, 20, 075-082.	1.1	8
119	A new mouse model for noninvasive fluorescenceâ€based monitoring of mitochondrial <scp>UCP</scp> 1 expression. FEBS Letters, 2019, 593, 1201-1212.	1.3	8
120	Dietary regulation of nuclear receptors in obesity-related metabolic syndrome. Asia Pacific Journal of Clinical Nutrition, 2008, 17 Suppl 1, 126-30.	0.3	7
121	A Method for the Simultaneous Determination of 3T3-L1 Adipocyte Metabolites by Liquid Chromatography/Mass Spectrometry Using [¹³ C]-stable Isotopes. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1485-1489.	0.6	6
122	Localization of 9- and 13-oxo-octadecadienoic acids in tomato fruit. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1761-1764.	0.6	6
123	High-resolution crystal structures of the glycoside hydrolase family 45 endoglucanase EG27II from the snail <i>Ampullaria crossean</i> . Acta Crystallographica Section D: Structural Biology, 2019, 75, 426-436.	1.1	6
124	An Efficient Purification Method for Quantitative Determinations of Protodioscin, Dioscin and Diosgenin in Plasma of Fenugreek-Fed Mice. Journal of Nutritional Science and Vitaminology, 2015, 61, 465-470.	0.2	5
125	Role of the Tyr270 residue in 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti. Journal of Bioscience and Bioengineering, 2017, 123, 154-162.	1.1	5
126	Down-regulation of senescence marker protein 30 by iron-specific chelator deferoxamine drives cell senescence. Bioscience, Biotechnology and Biochemistry, 2018, 82, 900-903.	0.6	5

#	ARTICLE	IF	CITATIONS
127	Erucin inhibits osteoclast formation via suppressing cell–cell fusion molecule DC-STAMP without influencing mineralization by osteoblasts. BMC Research Notes, 2022, 15, 105.	0.6	5
128	Modulation of Cell Adhesion and Differentiation on Collagen Gels by the Addition of the Ovalbumin Secretory Signal Peptide. ACS Biomaterials Science and Engineering, 2019, 5, 5698-5704.	2.6	4
129	Periplasmic Secretion of Functional Ovotransferrin N-Lobe inEscherichia coli. Bioscience, Biotechnology and Biochemistry, 1997, 61, 2125-2126.	0.6	3
130	Upregulation and stabilization of senescence marker protein-30 by epigallocatechin gallate against <i>tert</i> -butyl hydroperoxide-induced liver injury <i>in vitro</i> and <i>in vivo</i> . Journal of Clinical Biochemistry and Nutrition, 2021, 68, 51-57.	0.6	3
131	Novel Enzymes, Maltooligosyl Trehalose Synthase and Maltooligosyl Trehalose Trehalohydrolase and Their Application to the Production of Trehalose from Starch. Trends in Glycoscience and Glycotechnology, 1996, 8, 369-370.	0.0	3
132	(<i>S</i>)-Equol Is More Effective than (<i>R</i>)-Equol in Inhibiting Osteoclast Formation and Enhancing Osteoclast Apoptosis, and Reduces Estrogen Deficiency–Induced Bone Loss in Mice. Journal of Nutrition, 0, , .	1.3	3
133	Capsaicin inhibits the production of tumor necrosis factor \hat{l}_{\pm} by LPS-stimulated murine macrophages, RAW 264.7: a PPARγ ligand-like action as a novel mechanism [FEBS Letters 572 (2004) 266-270]. FEBS Letters, 2004, 575, 141-141.	1.3	2
134	Anin VitroAnalysis System Using a Fluorescence Protein Reporter for Evaluating Anti-Inflammatory Effects in Macrophages. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1582-1587.	0.6	2
135	Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors. Journal of Nutritional Science and Vitaminology, 2015, 61, S128-S130.	0.2	2
136	Relationship between the induced-fit loop and the activity of <i>Klebsiella pneumoniae</i> pullulanase. Acta Crystallographica Section D: Structural Biology, 2019, 75, 792-803.	1,1	2
137	Food Intake and Thermogenesis in Adipose Tissue. The Korean Journal of Obesity, 2016, 25, 109-114.	0.2	2
138	Feasible protein aggregation of phosphorylated poly-Î ³ -glutamic acid derivative from Bacillus subtilis () Tj ETQq0	0 0 rgBT /	Overlock 10 T
139	Iron deficiency negatively regulates protein methylation via the downregulation of protein arginine methyltransferase. Heliyon, 2020, 6, e05059.	1.4	1
140	Estimation of stochastic model for random moving image by means of noncausal model. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi) Tj ETQq0	O OorgBT /O	Overlock 10 T
141	Isoprenols. , 0, , 301-310.		0
142	Structure of 4-pyridoxolactonase fromMesorhizobium loti. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 424-432.	0.4	0
143	[Review] Crystal Structure Analysis of \hat{l}^2 -Amylase/Saccharide Complexes Measured at Different pH and Room Temperature Bulletin of Applied Glycoscience, 2021, 11, 79-86.	0.0	0
144	Obesity and Nuclear Receptors: Effective Genomic Strategies in Functional Foods., 0,, 47-58.		0