List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7039731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Papillary Muscle Approximation Versus Restrictive Annuloplasty Alone for SevereÂlschemic Mitral Regurgitation. Journal of the American College of Cardiology, 2016, 67, 2334-2346.	1.2	159
2	Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold. Journal of Cardiovascular Translational Research, 2016, 9, 334-342.	1.1	76
3	Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. Recent Patents on Inflammation and Allergy Drug Discovery, 2019, 13, 158-173.	3.9	60
4	Is subvalvular repair worthwhile in severe ischemic mitral regurgitation? Subanalysis of the Papillary Muscle Approximation trial. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 286-295.e2.	0.4	53
5	Long-term outcome of cryopreserved allograft for aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1357-1365.e6.	0.4	43
6	Compliance mismatch and compressive wall stresses drive anomalous remodelling of pulmonary trunks reinforced with Dacron grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 287-302.	1.5	41
7	An experimental model of the Ross operation: Development of resorbable reinforcements for pulmonary autografts. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 1134-1142.	0.4	39
8	Basic and Clinical Research Against Advanced Glycation End Products (AGEs): New Compounds to Tackle Cardiovascular Disease and Diabetic Complications. Recent Patents on Cardiovascular Drug Discovery, 2016, 10, 10-33.	1.5	37
9	Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1141-1157.	1.4	37
10	A composite semiresorbable armoured scaffold stabilizes pulmonary autograft after the Ross operation: Mr Ross's dream fulfilled. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 155-164.e1.	0.4	37
11	Introducing bioresorbable scaffolds into the show. A potential adjunct to resuscitate Ross procedure. International Journal of Cardiology, 2015, 190, 50-52.	0.8	35
12	The Ross procedure: Underuse or under-comprehension?. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 1463-1464.	0.4	33
13	Implantation of a Poly-l-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 2017, 10, 47-65.	1.1	33
14	Functional mitral regurgitation: an overview for surgical management framework. Journal of Thoracic Disease, 2018, 10, 4540-4555.	0.6	32
15	Risk of Ischemic Mitral Regurgitation Recurrence After Combined Valvular and Subvalvular Repair. Annals of Thoracic Surgery, 2019, 108, 536-543.	0.7	32
16	The role of extracellular matrix in age-related conduction disorders: a forgotten player?. Journal of Geriatric Cardiology, 2015, 12, 76-82.	0.2	32
17	The Ross procedure at the crossroads: Lessons from biology. International Journal of Cardiology, 2015, 178, 37-39.	0.8	31
18	Preliminary in Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques. Drug Target Insights, 2016, 10s1, DTI.S35202.	0.9	31

#	Article	IF	CITATIONS
19	Structural deterioration of the cryopreserved mitral homograft valve. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 313-320.e1.	0.4	30
20	Use of allogeneic tissue to treat infective valvular disease: Has everything been said?. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 824-828.	0.4	30
21	Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mechanisms of Ageing and Development, 2019, 184, 111161.	2.2	30
22	Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Research in Cardiology, 2016, 111, 16.	2.5	29
23	Treatment options for ischemic mitral regurgitation: A meta-analysis. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 607-622.e14.	0.4	29
24	Predictive factors of long-term results following valve repair in ischemic mitral valve prolapse. International Journal of Cardiology, 2016, 204, 218-228.	0.8	27
25	In Stent Neo-Atherosclerosis: Pathophysiology, Clinical Implications, Prevention, and Therapeutic Approaches. Life, 2022, 12, 393.	1.1	27
26	Papillary Muscle Approximation for Ischemic Mitral Valve Regurgitation. Journal of Cardiac Surgery, 2008, 23, 733-735.	0.3	26
27	Reply. Journal of the American College of Cardiology, 2016, 68, 1147-1148.	1.2	26
28	Reinforcement of the pulmonary artery autograft with a polyglactin and polydioxanone mesh in the Ross operation: experimental study in growing lamb. Journal of Heart Valve Disease, 2014, 23, 145-8.	0.5	26
29	Biomechanics drive histological wall remodeling of neoaortic root: A mathematical model to study the expression levels of ki 67, metalloprotease, and apoptosis transition. Journal of Biomedical Materials Research - Part A, 2016, 104, 2785-2793.	2.1	25
30	Double row of overlapping sutures for downsizing annuloplasty decreases the risk of residual regurgitation in ischaemic mitral valve repair. European Journal of Cardio-thoracic Surgery, 2016, 49, 1182-1187.	0.6	25
31	Mitral endocarditis: A new management framework. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1486-1495.e4.	0.4	25
32	Effect of Statins on Platelet Activation and Function: From Molecular Pathways to Clinical Effects. BioMed Research International, 2021, 2021, 1-10.	0.9	24
33	Simulating the ideal geometrical and biomechanical parameters of the pulmonary autograft to prevent failure in the Ross operation. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 269-276.	0.5	22
34	Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers, 2021, 13, 711.	2.0	22
35	The Choice of Treatment in Ischemic Mitral Regurgitation With Reduced Left Ventricular Function. Annals of Thoracic Surgery, 2019, 108, 1901-1912.	0.7	20
36	Lights and Shadows on the Ross Procedure: Biological Solutions for Biological Problems. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 815-822.	0.4	18

#	Article	IF	CITATIONS
37	Simplest solutions are not always the cleverest: Can we stitch in an infected annulus? Should we rethink the current guidelines?. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1899-1900.	0.4	17
38	Biomechanics of failed ischemic mitral valve repair: Discovering new frontiers. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 832-833.	0.4	16
39	Euler's Elastica-Based Biomechanics of the Papillary Muscle Approximation in Ischemic Mitral Valve Regurgitation: A Simple 2D Analytical Model. Materials, 2019, 12, 1518.	1.3	15
40	A Finite Element Analysis Study from 3D CT to Predict Transcatheter Heart Valve Thrombosis. Diagnostics, 2020, 10, 183.	1.3	15
41	Association between COVID-19 Diagnosis and Coronary Artery Thrombosis: A Narrative Review. Biomedicines, 2022, 10, 702.	1.4	15
42	Ischemic mitral valve prolapse. Journal of Thoracic Disease, 2016, 8, 3752-3761.	0.6	13
43	Papillary muscle approximation in mitral valve repair for secondary MR. Journal of Thoracic Disease, 2017, 9, S635-S639.	0.6	13
44	Trends in Managing Cardiac and Orthopaedic Device-Associated Infections by Using Therapeutic Biomaterials. Polymers, 2021, 13, 1556.	2.0	13
45	Pushing the Limits in Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2016, 9, 2186-2188.	1.1	12
46	keep fumbling around in the dark when it comes to infective endocarditis, or produce new, reliable data to redesign the guidelines?. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 75-76.	0.4	12
47	Mitral Valve and Subvalvular Repair for Secondary Mitral Regurgitation. Cardiology in Review, 2018, 26, 22-28.	0.6	12
48	CoreValve vs. Sapien 3 Transcatheter Aortic Valve Replacement: A Finite Element Analysis Study. Bioengineering, 2021, 8, 52.	1.6	12
49	How to treat severe symptomatic structural valve deterioration of aortic surgical bioprosthesis: transcatheter valve-in-valve implantation or redo valve surgery?. European Journal of Cardio-thoracic Surgery, 2018, 54, 977-985.	0.6	11
50	Finite element analysis applied to the transcatheter mitral valve therapy: Studying the present, imagining the future. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e149-e151.	0.4	11
51	Ross operation 23 years after surgery: It should not be a "forgotten―option. Journal of Cardiac Surgery, 2020, 35, 952-956.	0.3	11
52	ls it time to change how we think about incomplete coronary revascularization?. International Journal of Cardiology, 2016, 224, 295-298.	0.8	10
53	Preoperative atorvastatin reduces bleeding and blood products use in patients undergoing on-pump coronary artery bypass grafting. Journal of Cardiovascular Medicine, 2017, 18, 976-982.	0.6	10
54	Delayed prosthesis malposition after transcatheter aortic valve implantation causing coronaries obstruction. European Journal of Cardio-thoracic Surgery, 2017, 52, 1227-1228.	0.6	10

#	Article	IF	CITATIONS
55	Thromboembolic Complications of SARS-CoV-2 and Metabolic Derangements: Suggestions from Clinical Practice Evidence to Causative Agents. Metabolites, 2021, 11, 341.	1.3	10
56	A narrative review of early surgery versus conventional treatment for infective endocarditis: do we have an answer?. Annals of Translational Medicine, 2020, 8, 1626-1626.	0.7	10
57	Pulmonary autograft in aortic position: is everything known?. Translational Pediatrics, 2017, 5, 11-17.	0.5	9
58	Complementary Role of the Computed Biomodelling through Finite Element Analysis and Computed Tomography for Diagnosis of Transcatheter Heart Valve Thrombosis. BioMed Research International, 2018, 2018, 1-13.	0.9	9
59	Mitral regurgitation after transcatheter aortic valve replacement. Journal of Thoracic Disease, 2020, 12, 2926-2935.	0.6	9
60	The Use of Bioactive Polymers for Intervention and Tissue Engineering: The New Frontier for Cardiovascular Therapy. Polymers, 2021, 13, 446.	2.0	9
61	A narrative review of echocardiography in infective endocarditis of the right heart. Annals of Translational Medicine, 2020, 8, 1622-1622.	0.7	9
62	The use of allogenic and autologous tissue to treat aortic valve endocarditis. Annals of Translational Medicine, 2019, 7, 491-491.	0.7	9
63	Incomplete Revascularization in PCIÂand CABG. Journal of the American College of Cardiology, 2016, 68, 877-878.	1.2	8
64	TAVI in Lower Risk Patients. Journal of the American College of Cardiology, 2016, 67, 1380-1381.	1.2	8
65	Analysing the reasons of failure of surgical mitral repair approaches—do we need to better think in biomechanics?. Journal of Thoracic Disease, 2017, 9, S661-S664.	0.6	8
66	Revisiting the guidelines and choice the ideal substitute for aortic valve endocarditis. Annals of Translational Medicine, 2020, 8, 952-952.	0.7	8
67	The Use of Radial Artery for CABG: An Update. BioMed Research International, 2021, 2021, 1-14.	0.9	8
68	A management framework for left sided endocarditis: a narrative review. Annals of Translational Medicine, 2020, 8, 1627-1627.	0.7	8
69	Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. Journal of Clinical Medicine, 2022, 11, 2460.	1.0	8
70	Use of bioresorbable scaffold for neopulmonary artery in simple transposition of great arteries: Tissue engineering moves steps in pediatric cardiac surgery. International Journal of Cardiology, 2015, 201, 639-643.	0.8	7
71	Learning From Controversy: Contemporary Surgical Management of Aortic Valve Endocarditis. Clinical Medicine Insights: Cardiology, 2020, 14, 117954682096072.	0.6	7
72	Bioengineering Case Study to Evaluate Complications of Adverse Anatomy of Aortic Root in Transcatheter Aortic Valve Replacement: Combining Biomechanical Modelling with CT Imaging. Bioengineering, 2020, 7, 121.	1.6	7

FRANCESCO NAPPI

#	Article	IF	CITATIONS
73	Finite Element Analysis Investigate Pulmonary Autograft Root and Leaflet Stresses to Understand Late Durability of Ross Operation. Biomimetics, 2020, 5, 37.	1.5	7
74	The New Challenge for Heart Endocarditis: From Conventional Prosthesis to New Devices and Platforms for the Treatment of Structural Heart Disease. BioMed Research International, 2021, 2021, 1-17.	0.9	7
75	The quest for the optimal surgical management of tricuspid valve endocarditis in the current era: a narrative review. Annals of Translational Medicine, 2020, 8, 1628-1628.	0.7	7
76	MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets. International Journal of Molecular Sciences, 2021, 22, 12132.	1.8	7
77	Introductory Editorial: Drug-Eluting Stents or Drug-Eluting Grafts? Insights from Proteomic Analysis. Drug Target Insights, 2016, 10s1, DTI.S41240.	0.9	6
78	Biomechanics raises solution to avoid geometric mitral valve configuration abnormalities in ischemic mitral regurgitation. Journal of Thoracic Disease, 2017, 9, S624-S628.	0.6	6
79	Euler's elastica–based biomechanical assessment for neochordal insertion in the treatment of degenerative mitral valve repair. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 603-605.	0.4	6
80	Aortic homografts: Should we really lose the opportunity?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, e245-e246.	0.4	6
81	Incertitude pathophysiology and management during the first phase of Covid 19 pandemic. Annals of Thoracic Surgery, 2021, , .	0.7	6
82	Infective endocarditis in the 21st century. Annals of Translational Medicine, 2020, 8, 1620-1620.	0.7	6
83	Endothelial Dysfunction in SARS-CoV-2 Infection. Biomedicines, 2022, 10, 654.	1.4	6
84	Impact of Structural Valve Deterioration on Outcomes in the Cryopreserved Mitral Homograft Valve. Journal of Cardiac Surgery, 2014, 29, 616-622.	0.3	5
85	Preoperative atorvastatin reduces bleeding and blood transfusions in patients undergoing elective isolated aortic valve replacement. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 51-58.	0.5	5
86	Are the dynamic changes of the aortic root determinant for thrombosis or leaflet degeneration after transcatheter aortic valve replacement?. Journal of Thoracic Disease, 2020, 12, 2919-2925.	0.6	5
87	Biomechanical future of the growing pulmonary autograft in Ross operation. Translational Pediatrics, 2020, 9, 137-143.	0.5	5
88	lschemic functional mitral regurgitation: from pathophysiological concepts to current treatment options. A systemic review for optimal strategy. General Thoracic and Cardiovascular Surgery, 2021, 69, 213-229.	0.4	5
89	COVID-19 Pathogenesis: From Molecular Pathway to Vaccine Administration. Biomedicines, 2021, 9, 903.	1.4	5
90	Papillary muscle septalization for functional tricuspid regurgitation: Proof of concept and preliminary clinical experience. JTCVS Techniques, 2021, 10, 282-288.	0.2	5

FRANCESCO NAPPI

#	Article	IF	CITATIONS
91	Monobloc or Separate Aortic and Mitral Homografts for Endocarditis of the Intervalvular Fibrosa?. Annals of Thoracic Surgery, 2021, 112, 1382-1383.	0.7	5
92	A narrative review of the interpretation of guidelines for the treatment of infective endocarditis. Annals of Translational Medicine, 2020, 8, 1623-1623.	0.7	5
93	Sharing of decision-making for infective endocarditis surgery: a narrative review of clinical and ethical implications. Annals of Translational Medicine, 2020, 8, 1624-1624.	0.7	5
94	Downsizing annuloplasty in ischemic mitral regurgitation: double row overlapping suture to avoid ring disinsertion in valve repair. Surgical Technology International, 2014, 25, 203-6.	0.1	5
95	Hybrid Coronary Revascularization: An Attractive Alternative Between Actual Results and Future Trends. Surgical Technology International, 2016, 28, 204-10.	0.1	5
96	Molecular Insights of SARS-CoV-2 Antivirals Administration: A Balance between Safety Profiles and Impact on Cardiovascular Phenotypes. Biomedicines, 2022, 10, 437.	1.4	5
97	miRNAs in Cardiac Myxoma: New Pathologic Findings for Potential Therapeutic Opportunities. International Journal of Molecular Sciences, 2022, 23, 3309.	1.8	5
98	Best to Clarify to Avoid Misunderstandings in the Biomechanics of Ross Operation: Parentheses Matter. Annals of Thoracic Surgery, 2018, 106, 641-642.	0.7	4
99	Transaortic Alfieri Repair for Secondary Mitral Regurgitation: Effective and Underused. Annals of Thoracic Surgery, 2018, 106, 1264.	0.7	4
100	Alfieri Edge-to-Edge Mitral Valve Repair for All Seasons?. Annals of Thoracic Surgery, 2018, 106, 1258.	0.7	4
101	Geometric distortion of the mitral valve apparatus in ischemic mitral regurgitation: Should we really forfeit the opportunity for a complete repair?. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, e91-e92.	0.4	4
102	Mitral regurgitation: lessons learned from COAPT and MITRA-Fr. Journal of Thoracic Disease, 2020, 12, 2936-2944.	0.6	4
103	Role of autophagy in aneurysm and dissection of the ascending aorta. Future Cardiology, 2020, 16, 517-526.	0.5	4
104	A right track stems from the right learning. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e177-e178.	0.4	4
105	Perioperative management after elective cardiac surgery: the predictive value of procalcitonin for infective and noninfective complications. Future Cardiology, 2021, 17, 1349-1358.	0.5	4
106	Coronary artery bypass grafting (CABC) alone in moderate ischemic mitral regurgitation: is CABG really enough?. Annals of Translational Medicine, 2016, 4, 413-413.	0.7	4
107	Heart Valve Endocarditis. Surgical Technology International, 2020, 37, 203-215.	0.1	4
108	TAVR vs SAVR: Rising Expectations and Changing Indications for Surgery in Response to PARTNER II. Seminars in Thoracic and Cardiovascular Surgery, 2017, 29, 8-11.	0.4	3

#	Article	IF	CITATIONS
109	Obstructive Cardiomyopathy and Tethering in Ischemic Mitral Regurgitation: Two Sides of theÂCoin. Annals of Thoracic Surgery, 2019, 107, 1911-1912.	0.7	3
110	A Geometric Approach to Ischemic Mitral Regurgitation: Evaluating the Evidence of Valve Distortion. Annals of Thoracic Surgery, 2020, 109, 982.	0.7	3
111	Combined Replacement and Subvalvular Repair for Functional Mitral Regurgitation: The New Frontier?. Annals of Thoracic Surgery, 2020, 109, 303-304.	0.7	3
112	The Choice of Pulmonary Autograft in Aortic Valve Surgery: A State-of-the-Art Primer. BioMed Research International, 2021, 2021, 1-15.	0.9	3
113	Exploring the Operative Strategy for Secondary Mitral Regurgitation: A Systematic Review. BioMed Research International, 2021, 2021, 1-22.	0.9	3
114	Biomechanics of Ross Operation: Still So Much to Learn. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 827-828.	0.4	3
115	Biology and bioresorbable materials in cardiac surgery: why could they be important in the current era of innovations and technology?. International Cardiovascular Forum Journal, 0, 3, 2.	1.1	3
116	Moderate to severe ischemic mitral regurgitation: More data to guide the choice. Why not consider the use of subvalvular repair?. Cardiology Journal, 2020, 27, 220-222.	0.5	3
117	Hybrid coronary revascularization in multivessel coronary artery disease: a systematic review. Future Cardiology, 2022, 18, 219-234.	0.5	3
118	Transcatheter closure for the treatment of pseudoventricular aneurysm after acute myocardial infarction: a case report. Annals of Translational Medicine, 2020, 8, 1528-1528.	0.7	3
119	Aortic valve homograft: 10-year experience. Surgical Technology International, 2014, 24, 265-72.	0.1	3
120	Mitral valve restenosis after closed mitral commissurotomy: case discussion. Journal of Thoracic Disease, 2019, 11, 3659-3671.	0.6	2
121	Mitral valve endocarditis—Unrealized expectations for repair of mitral valve. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, e31-e32.	0.4	2
122	Structural heart disease: the year in valvular and complex coronary intervention trials. Journal of Thoracic Disease, 2020, 12, 2910-2918.	0.6	2
123	Statin treatment and hypertrophic scarring after cardiac surgery. Wound Repair and Regeneration, 2021, 29, 129-133.	1.5	2
124	The Use of Anterior Mitral Leaflet Augmentation With Autologous Pericardium: Why Not?. Annals of Thoracic Surgery, 2021, 112, 688-689.	0.7	2
125	The future of Ross procedure. Annals of Pediatric Cardiology, 2015, 8, 256.	0.2	2
126	Is the Optimization of the Surgical Technique the Secret to the Long-Lasting Pulmonary Autograft?. Annals of Thoracic Surgery, 2022, 114, 2403.	0.7	2

#	Article	IF	CITATIONS
127	Systolic Anterior Motion (SAM) Complicating Mitral Valve Repair: Current Concepts of Intraoperative and Postoperative Management. Surgical Technology International, 2020, 37, 225-232.	0.1	2
128	Subannular repair or transcatheter edge-to-edge repair for secondary mitral regurgitation? More data for international guidelines. JTCVS Open, 2022, , .	0.2	2
129	Minimally Invasive Approach for Complex Mitral Disease: Time to Choose the Lesser ofÂEvils?. Annals of Thoracic Surgery, 2019, 107, 1287-1288.	0.7	1
130	Gene therapy and regenerative tissue engineering in congenital heart disease. Translational Pediatrics, 2019, 8, 356-359.	0.5	1
131	Does Type of TAVR Access Affect Early Mortality in Morbidly Obese Patients?. Annals of Thoracic Surgery, 2019, 107, 1583-1584.	0.7	1
132	Left Ventricular Reconstruction With Mitral Surgery: Do Not Delay and Continue to Improve Repair. Annals of Thoracic Surgery, 2020, 109, 1951.	0.7	1
133	Pathophysiologic Mechanisms of Subvalvular Repair and Its Clinical Implications. Annals of Thoracic Surgery, 2020, 110, 344-345.	0.7	1
134	Ischemic mitral regurgitation animal models: going from the whole to the part or viceversa?. Annals of Thoracic Surgery, 2021, , .	0.7	1
135	Percutaneous versus Surgical Intervention for Severe Aortic Valve Stenosis: A Systematic Review. BioMed Research International, 2021, 2021, 1-26.	0.9	1
136	The Use of Subvalvular Repair for Functional Mitral Regurgitation. Annals of Thoracic and Cardiovascular Surgery, 2021, 27, 136-138.	0.3	1
137	Transcatheter closure for the treatment of pseudoventricular aneurysm after acute myocardial infarction: a case report. Annals of Translational Medicine, 2020, 8, 1528.	0.7	1
138	The effectiveness and safety of pulmonary autograft as living tissue in Ross procedure: a systematic review. Translational Pediatrics, 2022, 11, 280-297.	0.5	1
139	Between Mitral Valve Translocation and Lack of High-Level Evidence in Subannular Mitral Repair. Annals of Thoracic Surgery, 2022, 114, 2400-2401.	0.7	1
140	Successful Valve Prolapse Repair for Ischemic Mitral Regurgitation: Combined Papillary Muscle Approximation and Mitral Chordae System Replacement. Surgical Technology International, 2015, 26, 192-6.	0.1	1
141	The Radial Artery for Coronary Bypass Grafting: The Fifth Decade. Surgical Technology International, 2019, 35, 253-264.	0.1	1
142	Not just quantification of mitral regurgitation. Going back to the morphology of tethering?. Annals of Thoracic Surgery, 2021, , .	0.7	1
143	Restrictive Mitral Annuloplasty: Still a Viable Procedure?. Annals of Thoracic Surgery, 2021, , .	0.7	1
144	Structural Heart Valve Disease in the Era of Change and Innovation: The Crosstalk between Medical Sciences and Engineering. Bioengineering, 2022, 9, 230.	1.6	1

#	Article	IF	CITATIONS
145	Advanced measurements of coronary calcium scores: how does it affect current clinical practice?. Future Cardiology, 2022, 18, 35-41.	0.5	0
146	The Ross Operation: A Present for the Future. Annals of Thoracic Surgery, 2021, 111, 1742.	0.7	0
147	The use of subvalvular repair for ischemic mitral regurgitation: Is it finally coming of age?. JTCVS Open, 2021, , .	0.2	0
148	Nonsurgical Management of a Papillary Fibroelastoma of the Aortic Valve. Case Reports in Cardiology, 2021, 2021, 1-4.	0.1	0
149	Diaphragmatic Rupture: Too Much to Stomach. Annals of Thoracic Surgery, 2021, 112, e391.	0.7	0
150	Biomechanical Knowledge of the Pulmonary Valve Autograft for the Improvement of the Ross Procedure. Annals of Thoracic Surgery, 2021, , .	0.7	0
151	The role of the extracellular matrix in the development of heart valve disease: Underestimation or undercomprehension?. Journal of Cardiac Surgery, 2022, , .	0.3	0
152	Commentary: Vessel wall remodeling—an ever-lurking threat. JTCVS Techniques, 2022, 12, 15-16.	0.2	0
153	Biomechanics of Transcatheter Aortic Valve Implant. Bioengineering, 2022, 9, 299.	1.6	0