
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7039242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-Emitting Carbazole Derivatives:Â Potential Electroluminescent Materials. Journal of the American Chemical Society, 2001, 123, 9404-9411.	6.6	503
2	Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Organic Letters, 2005, 7, 1899-1902.	2.4	428
3	2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells. Chemistry of Materials, 2008, 20, 1830-1840.	3.2	401
4	Recent developments in molecule-based organic materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8734.	6.7	362
5	Benzimidazole/Amineâ€Based Compounds Capable of Ambipolar Transport for Application in Single‣ayer Blueâ€Emitting OLEDs and as Hosts for Phosphorescent Emitters. Angewandte Chemie - International Edition, 2008, 47, 581-585.	7.2	270
6	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	1.7	207
7	Organic Dyes Containing Furan Moiety for High-Performance Dye-Sensitized Solar Cells. Organic Letters, 2009, 11, 97-100.	2.4	198
8	Organic dyes containing thienylfluorene conjugation for solar cells. Chemical Communications, 2005, , 4098.	2.2	185
9	Versatile, Benzimidazole/Amineâ€Based Ambipolar Compounds for Electroluminescent Applications: Single‣ayer, Blue, Fluorescent OLEDs, Hosts for Single‣ayer, Phosphorescent OLEDs. Advanced Functional Materials, 2009, 19, 2661-2670.	7.8	183
10	Blue-Emitting Anthracenes with End-Capping Diarylamines. Chemistry of Materials, 2002, 14, 3860-3865.	3.2	171
11	Organic Dyes Containing 1 <i>H</i> -Phenanthro[9,10- <i>d</i>]imidazole Conjugation for Solar Cells. Journal of Physical Chemistry C, 2007, 111, 18785-18793.	1.5	140
12	Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach. ChemSusChem, 2013, 6, 20-35.	3.6	130
13	Dipolar Compounds Containing Fluorene and a Heteroaromatic Ring as the Conjugating Bridge for Highâ€Performance Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 3184-3193.	1.7	124
14	Pyrrole-Based Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 12557-12567.	1.5	117
15	Organic Dyes Incorporating the Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 16-19.	2.4	112
16	Sensitizers with rigidified-aromatics as the conjugated spacers for dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 9765-9780.	2.7	110
17	Hexaphenylphenylene dendronised pyrenylamines for efficient organic light-emitting diodes. Journal of Materials Chemistry, 2005, 15, 4453.	6.7	99
18	Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells. Chemical Communications, 2015, 51, 2152-2155.	2.2	90

#	Article	IF	CITATIONS
19	Y-shaped metal-free D–π–(A)2 sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3092.	5.2	89
20	High Tg blue emitting materials for electroluminescent devices. Journal of Materials Chemistry, 2005, 15, 2455.	6.7	88
21	2,6-Conjugated anthracene sensitizers for high-performance dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2477.	15.6	88
22	Organic Dyes Containing a Cyanovinyl Entity in the Spacer for Solar Cells Applications. Journal of Physical Chemistry C, 2008, 112, 19739-19747.	1.5	84
23	Arylamine-Based Dyes for p-Type Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 4930-4933.	2.4	83
24	Squaraine-Arylamine Sensitizers for Highly Efficient p-Type Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 4726-4729.	2.4	79
25	High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole. Journal of Materials Chemistry, 2012, 22, 10929.	6.7	79
26	Highâ€Performance Dyeâ€Sensitized Solar Cells Based on Phenothiazine Dyes Containing Double Anchors and Thiophene Spacers. Chemistry - an Asian Journal, 2014, 9, 357-366.	1.7	79
27	1â€Alkylâ€1 <i>H</i> â€imidazoleâ€Based Dipolar Organic Compounds for Dyeâ€5ensitized Solar Cells. Chemistry an Asian Journal, 2010, 5, 87-96.	-1.7	77
28	Syntheses and Reactivity of Ruthenium Ï f -Pyridylacetylides. Organometallics, 1997, 16, 2038-2048.	1.1	76
29	Diphenylthienylamine-Based Star-Shaped Molecules for Electroluminescence Applications. Chemistry of Materials, 2001, 13, 2626-2631.	3.2	74
30	Pyrazine-incorporating panchromatic sensitizers for dye sensitized solar cells under one sun and dimÂlight. Journal of Materials Chemistry A, 2018, 6, 13778-13789.	5.2	73
31	Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 2416-2421.	4.0	64
32	Electroluminescent bipolar compounds containing quinoxaline or pyridopyrazine and triarylamine segments. Journal of Materials Chemistry, 2002, 12, 3516-3522.	6.7	63
33	Light-Emitting Diodes Based on a Carbazole-Derivatized Dopant:Â Origin of Dopant Excitation as a Function of the Device Structure. Chemistry of Materials, 2002, 14, 357-361.	3.2	63
34	Highâ€Performance Aqueous/Organic Dye‣ensitized Solar Cells Based on Sensitizers Containing Triethylene Oxide Methyl Ether. ChemSusChem, 2015, 8, 2503-2513.	3.6	61
35	Benzotriazoleâ€Containing D–π–A Conjugated Organic Dyes for Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 809-816.	1.7	60
36	Metal-Free Sensitizers for Dye-Sensitized Solar Cells. Chemical Record, 2016, 16, 1311-1336.	2.9	60

#	Article	IF	CITATIONS
37	Conjugated Pyridines with an End-Capping Ferrocene. Organometallics, 1996, 15, 5028-5034.	1.1	58
38	Organic dyes with a fused segment comprising benzotriazole and thieno[3,2-b]pyrrole entities as the conjugated spacer for high performance dye-sensitized solar cells. Chemical Communications, 2015, 51, 17080-17083.	2.2	58
39	Tetraphenylethylene tethered phenothiazine-based double-anchored sensitizers for high performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 23225-23233.	5.2	56
40	Syntheses and Second-Order Optical Nonlinearity of Ruthenium σ-Acetylides with an End-Capping Organic Electron Acceptor and Thienyl Entity in the Conjugation Chain. Organometallics, 1998, 17, 2188-2198.	1.1	55
41	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 12310-12321.	5.2	55
42	Incorporating a New 2 <i>H</i> -[1,2,3]Triazolo[4,5- <i>c</i>]pyridine Moiety To Construct D–Aâ [~] 'π–A Organic Sensitizers for High Performance Solar Cells. Organic Letters, 2014, 16, 3052-3055.	2.4	51
43	Ferrocene End-Capped Palladium(II) and Platinum(II) Complexes with Thiophene Spacers. Organometallics, 1999, 18, 5285-5291.	1.1	45
44	Organic sensitizers with a rigid dithienobenzotriazole-based spacer for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 6553-6560.	5.2	44
45	Synthesis and characterization of new fluorescent two-photon absorption chromophores. Journal of Materials Chemistry, 2006, 16, 850-857.	6.7	43
46	Heteroleptic Ruthenium Sensitizers That Contain an Ancillary Bipyridine Ligand Tethered with Hydrocarbon Chains for Efficient Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 6781-6788.	1.7	43
47	Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 5430-5437.	1.7	43
48	Nonconjugated Red-Emitting Dendrimers with p-Type and/or n-Type Peripheries. Organic Letters, 2006, 8, 2233-2236.	2.4	42
49	Energy harvesting star-shaped molecules for electroluminescence applications. Chemical Communications, 2004, , 2328.	2.2	39
50	Synthesis, optical and electrochemical properties of pyridal[2,1,3]thiadiazole based organic dyes for dye sensitized solar cells. Organic Electronics, 2014, 15, 378-390.	1.4	39
51	Dihydrophenanthrene-Based Metal-Free Dyes for Highly Efficient Cosensitized Solar Cells. Organic Letters, 2012, 14, 3612-3615.	2.4	38
52	Multi-anchored sensitizers for dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 969-985.	2.5	37
53	Cost-effective dopant-free star-shaped oligo-aryl amines for high performance perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14209-14221.	5.2	37
54	Anthracene/Phenothiazine Ï€â€Conjugated Sensitizers for Dyeâ€Sensitized Solar Cells using Redox Mediator in Organic and Waterâ€based Solvents. ChemSusChem, 2015, 8, 105-113.	3.6	36

#	Article	IF	CITATIONS
55	Effective suppression of interfacial charge recombination by a 12-crown-4 substituent on a double-anchored organic sensitizer and rotating disk electrochemical evidence. Journal of Materials Chemistry A, 2017, 5, 7586-7594.	5.2	36
56	Organic Dyes Incorporating the Dithieno[3,2â€ <i>f</i> :2′,3′â€ <i>h</i>]quinoxaline Moiety for Dye‧ens Solar Cells. ChemSusChem, 2015, 8, 2932-2939.	itized	34
57	Donor–Acceptor Interactions in Redâ€Emitting Thienylbenzeneâ€Branched Dendrimers with Benzothiadiazole Core. Chemistry - A European Journal, 2008, 14, 11231-11241.	1.7	32
58	A remarkable enhancement of efficiency by co-adsorption with CDCA on the bithiazole-based dye-sensitized solar cells. Organic Electronics, 2013, 14, 2546-2554.	1.4	32
59	lonic Liquid with a Dualâ€Redox Couple for Efficient Dyeâ€ S ensitized Solar Cells. ChemSusChem, 2014, 7, 146-153.	3.6	32
60	Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochimica Acta, 2012, 66, 210-215.	2.6	30
61	Organic Dyes Incorporating the Dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2- <i>c</i>]furazan Moiety for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22612-22621.	4.0	30
62	Imidazoleâ€Based Sensitizers Containing Double Anchors for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 7367-7377.	1.2	30
63	Dipolar organic pyridyl dyes for dye-sensitized solar cell applications. Tetrahedron, 2012, 68, 767-773.	1.0	28
64	Hierarchical TiO _{1.1} Se _{0.9} -wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14079-14091.	5.2	28
65	Naphthyl and Thienyl Units as Bridges for Metalâ€Free Dyeâ€ S ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1074-1084.	1.7	27
66	Sensitizers for Aqueousâ€Based Solar Cells. Chemistry - an Asian Journal, 2017, 12, 486-496.	1.7	27
67	Electroactive and Sustainable Cu-MOF/PEDOT Composite Electrocatalysts for Multiple Redox Mediators and for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 8435-8444.	4.0	27
68	Organic Photosensitizers Incorporating Rigidified Dithieno[3,2- <i>f</i> :2′,3′- <i>h</i>]quinoxaline Segment Tethered with Thiophene Substitutes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 23066-23073.	4.0	25
69	Reversed Y-shape di-anchoring sensitizers for dye sensitized solar cells based on benzimidazole core. Dyes and Pigments, 2017, 140, 441-451.	2.0	24
70	Organic Photosensitizers Incorporating Rigid Benzo[1,2- <i>b</i> :6,5- <i>b</i> ′]dithiophene Segment for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43739-43746.	4.0	24
71	Boron Nitride/Sulfonated Polythiophene Composite Electrocatalyst as the TCO and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells: 21% at Dim Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 5251-5259.	3.2	24
72	Novel Organic Sensitizers Containing 2,6-Difunctionalized Anthracene Unit for Dye Sensitized Solar Cells. Polymers, 2012, 4, 1443-1461.	2.0	23

#	Article	IF	CITATIONS
73	Coplanar indenofluorene-based organic dyes for dye-sensitized solar cells. Tetrahedron, 2012, 68, 7755-7762.	1.0	23
74	Nearâ€Infraredâ€Absorbing and Dopantâ€Free Heterocyclic Quinoidâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 3139-3144.	3.6	23
75	Novel Fluorous Amphiphilic Heteroleptic Ru-Based Complexes for a Dye-Sensitized Solar Cell: The First Fluorous Bis-ponytailed Amphiphilic Ru Complexes. Inorganic Chemistry, 2011, 50, 4289-4294.	1.9	22
76	2H-[1,2,3]Triazolo[4,5-c]pyridine Cored Organic Dyes Achieving a High Efficiency: a Systematic Study of the Effect of Different Donors and π Spacers. ACS Applied Materials & Interfaces, 2015, 7, 22046-22057.	4.0	22
77	Orientation-Adjustable Metal–Organic Framework Nanorods for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 28242-28251.	4.0	21
78	Organic electroluminescent derivatives containing dibenzothiophene and diarylamine segments. Journal of Materials Chemistry, 2005, 15, 3233.	6.7	20
79	A phenothiazine/dimesitylborane hybrid material as a bipolar transport host of red phosphor. Journal of Materials Chemistry C, 2016, 4, 9499-9508.	2.7	18
80	Near-Infrared Absorbing Organoruthenium Complexes:Â Crystal Violet Analogues. Organometallics, 1999, 18, 320-327.	1.1	16
81	Benzimidazole/Pyridoimidazoleâ€Based Organic Sensitizers for Highâ€Performance Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 996-1004.	1.7	14
82	Dyeâ€Sensitized Solar Cells Based on (Donorâ€i€â€Acceptor) ₂ Dyes With Dithiafulvalene as the Donor. Chemistry - an Asian Journal, 2014, 9, 1933-1942.	1.7	13
83	Phenothiazinedioxideâ€Conjugated Sensitizers and a Dualâ€TEMPO/Iodide Redox Mediator for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2221-2229.	3.6	12
84	Hierarchical urchin-like CoSe ₂ /CoSeO ₃ electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination. Journal of Materials Chemistry A, 2019, 7, 26089-26097.	5.2	11
85	Influence of various dithienoheterocycles as conjugated linker in Naphtho[2,3-d] [1,2,3]triazole-based organic dyes for dye-sensitized solar cells. Dyes and Pigments, 2021, 188, 109220.	2.0	11
86	Novel conjugated copolymers based on dithiafulvalene moiety for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 2121-2129.	2.5	8
87	Synthesis and characterization of novel symmetrical two-photon chromophores derived from bis(triphenylaminotetrathienoacenyl) and fused-thiophene units. RSC Advances, 2015, 5, 54003-54010.	1.7	7
88	Bipolar transport materials for electroluminescence applications. Organic Electronics, 2016, 30, 265-274.	1.4	5
89	Organic Electroluminescent Bis(diarylamino) Dibenzofuran Derivatives. Journal of the Chinese Chemical Society, 2006, 53, 1317-1324.	0.8	4
90	Metalâ€Free Indeno[2,1â€ <i>b</i>]thiopheneâ€Based Sensitizers for Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2016, 5, 801-811.	1.3	2

#	Article	IF	CITATIONS
91	Organic dyes incorporating 9,10-dihydrophenanthrene moiety for dye-sensitized solar cells. Molecular Crystals and Liquid Crystals, 2020, 703, 32-38.	0.4	2
92	Metalâ€Free Sensitizers with a Perfluorohexyl Side Chain for Dye‧ensitized Solar Cells: Properties Alien to Alkyl Chains. Asian Journal of Organic Chemistry, 2018, 7, 819-828.	1.3	1