## Marcin Runowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7039086/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and<br>High-Temperature Upconversion Luminescence of Lanthanide-Doped<br>Phosphates—LaPO <sub>4</sub> /YPO <sub>4</sub> :Yb <sup>3+</sup> –Tm <sup>3+</sup> . ACS Applied<br>Materials & amp; Interfaces, 2018, 10, 17269-17279. | 4.0 | 236       |
| 2  | Upconverting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First<br>and Second Biological Windows: β-NaYF <sub>4</sub> :Yb <sup>3+</sup> –<br>Er <sup>3+</sup> @SiO <sub>2</sub> Temperature Sensor. ACS Applied Materials & amp; Interfaces, 2019,<br>11, 13389-13396.                  | 4.0 | 178       |
| 3  | Luminescent Nanothermometer Operating at Very High Temperature—Sensing up to 1000 K with<br>Upconverting Nanoparticles (Yb <sup>3+</sup> /Tm <sup>3+</sup> ). ACS Applied Materials &<br>Interfaces, 2020, 12, 43933-43941.                                                                                           | 4.0 | 130       |
| 4  | Lifetime nanomanometry – high-pressure luminescence of up-converting lanthanide nanocrystals –<br>SrF <sub>2</sub> :Yb <sup>3+</sup> ,Er <sup>3+</sup> . Nanoscale, 2017, 9, 16030-16037.                                                                                                                             | 2.8 | 114       |
| 5  | Optical Vacuum Sensor Based on Lanthanide Upconversion—Luminescence Thermometry as a Tool for<br>Ultralow Pressure Sensing. Advanced Materials Technologies, 2020, 5, 1901091.                                                                                                                                        | 3.0 | 102       |
| 6  | Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+ - optical sensor for multi-range<br>fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. Journal of Luminescence,<br>2018, 201, 104-109.                                                                                           | 1.5 | 91        |
| 7  | Optical Pressure Sensor Based on the Emission and Excitation Band Width (fwhm) and Luminescence<br>Shift of Ce <sup>3+</sup> -Doped Fluorapatite—High-Pressure Sensing. ACS Applied Materials &<br>Interfaces, 2019, 11, 4131-4138.                                                                                   | 4.0 | 88        |
| 8  | Sr <sub>2</sub> LuF <sub>7</sub> :Yb <sup>3+</sup> –Ho <sup>3+</sup> a€E"Er <sup>3+</sup> Upconverting<br>Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. ACS<br>Applied Nano Materials, 2020, 3, 6406-6415.                                                            | 2.4 | 80        |
| 9  | Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and<br>Manometry–Sensing under Extreme Conditions of Pressure and Temperature. ACS Applied Materials<br>& Interfaces, 2020, 12, 40475-40485.                                                                                     | 4.0 | 77        |
| 10 | Influence of Matrix on the Luminescent and Structural Properties of Glycerine-Capped,<br>Tb <sup>3+</sup> -Doped Fluoride Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 17188-17196.                                                                                                                      | 1.5 | 75        |
| 11 | Highly-efficient double perovskite Mn4+-activated Gd2ZnTiO6 phosphors: A bifunctional optical<br>sensing platform for luminescence thermometry and manometry. Chemical Engineering Journal, 2022,<br>446, 136839.                                                                                                     | 6.6 | 68        |
| 12 | Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range. Journal of Luminescence, 2019, 214, 116571.                                                                                                                          | 1.5 | 65        |
| 13 | Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26:Ce3+ phosphors:<br>Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chemical Engineering<br>Journal, 2022, 443, 136414.                                                                                        | 6.6 | 58        |
| 14 | Optical pressure sensing in vacuum and high-pressure ranges using lanthanide-based luminescent<br>thermometer–manometer. Journal of Materials Chemistry C, 2021, 9, 4643-4651.                                                                                                                                        | 2.7 | 56        |
| 15 | Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide<br>and Gold Nanoparticles Exhibiting SERS Effects. Journal of Physical Chemistry C, 2016, 120, 23788-23798.                                                                                                          | 1.5 | 53        |
| 16 | Eu <sup>3+</sup> and Tb <sup>3+</sup> doped LaPO <sub>4</sub> nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSC Advances, 2014, 4, 46305-46312.                                                                                                                    | 1.7 | 50        |
| 17 | Effects of Dopant Addition on Lattice and Luminescence Intensity Parameters of Eu(III)-Doped<br>Lanthanum Orthovanadate. Journal of Physical Chemistry C, 2016, 120, 28497-28508.                                                                                                                                     | 1.5 | 50        |

Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+=Sm3+, Eu3+, Tb3+,) Tj ETQq0  $\frac{0.0}{1.5}$  rgBT /Qyerlock 10

MARCIN RUNOWSKI

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optical pressure nano-sensor based on lanthanide doped SrB2O4:Sm2+ luminescence – Novel high-pressure nanomanometer. Sensors and Actuators B: Chemical, 2018, 273, 585-591.                                                                                                                                             | 4.0 | 48        |
| 20 | Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped<br>fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants. Journal of Alloys<br>and Compounds, 2014, 597, 63-71.                                                                          | 2.8 | 47        |
| 21 | Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry. Journal of Alloys and Compounds, 2022, 890, 161830.                                                                                                                                                           | 2.8 | 47        |
| 22 | Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals.<br>Journal of Nanoparticle Research, 2013, 15, 1958.                                                                                                                                                                   | 0.8 | 46        |
| 23 | Synthesis and Organic Surface Modification of Luminescent, Lanthanide-Doped Core/Shell<br>Nanomaterials (LnF <sub>3</sub> @SiO <sub>2</sub> @NH <sub>2</sub> @Organic Acid) for Potential<br>Bioapplications: Spectroscopic, Structural, and <i>in Vitro</i> Cytotoxicity Evaluation. Langmuir,<br>2014. 30. 9533-9543. | 1.6 | 46        |
| 24 | Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. Journal of Nanoparticle Research, 2013, 15, 2068.                                                                                                                                                             | 0.8 | 45        |
| 25 | Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu3+5%@SiO2@NH2. Journal of Colloid and Interface Science, 2016, 481, 245-255.                                                                                                           | 5.0 | 45        |
| 26 | Preparation, crystal structure and luminescence properties of a novel single-phase red emitting<br>phosphor CaSr <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> :Sm <sup>3+</sup> ,Li <sup>+</sup> . RSC<br>Advances, 2019, 9, 4834-4842.                                                                                 | 1.7 | 44        |
| 27 | Synthesis of lanthanide doped CeF 3 :Gd 3+ , Sm 3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. Journal of Alloys and Compounds, 2016, 661, 182-189.                                                                                                                               | 2.8 | 40        |
| 28 | Tm <sup>2+</sup> Activated SrB <sub>4</sub> O <sub>7</sub> Bifunctional Sensor of Temperature and<br>Pressure—Highly Sensitive, Multiâ€Parameter Luminescence Thermometry and Manometry. Advanced<br>Optical Materials, 2021, 9, 2101507.                                                                               | 3.6 | 40        |
| 29 | Structural, morphological and spectroscopic properties of Eu3+-doped rare earth fluorides synthesized by the hydrothermalmethod. Journal of Solid State Chemistry, 2013, 200, 76-83.                                                                                                                                    | 1.4 | 39        |
| 30 | UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Transactions, 2020, 49, 2129-2137.                                                                                                                                                                                                             | 1.6 | 39        |
| 31 | Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic,<br>and luminescent nanocrystalline rare earth fluorides. Journal of Nanoparticle Research, 2015, 17, 399.                                                                                                             | 0.8 | 38        |
| 32 | Er3+, Yb3+ co-doped Sr3(PO4)2 phosphors: A ratiometric luminescence thermometer based on Stark<br>levels with tunable sensitivity. Journal of Luminescence, 2020, 227, 117517.                                                                                                                                          | 1.5 | 37        |
| 33 | Nonlinear Optical Thermometry—A Novel Temperature Sensing Strategy via Second Harmonic<br>Generation (SHG) and Upconversion Luminescence in<br>BaTiO <sub>3</sub> :Ho <sup>3+</sup> ,Yb <sup>3+</sup> Perovskite. Advanced Optical Materials, 2021, 9,<br>2100386.                                                      | 3.6 | 37        |
| 34 | Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohydrate Polymers, 2019, 206, 742-748.                                                                                                                                                                     | 5.1 | 36        |
| 35 | Huge enhancement of Sm <sup>2+</sup> emission <i>via</i> Eu <sup>2+</sup> energy transfer in a<br>SrB <sub>4</sub> O <sub>7</sub> pressure sensor. Journal of Materials Chemistry C, 2020, 8, 4810-4817.                                                                                                                | 2.7 | 36        |
| 36 | A novel reddish-orange fluorapatite phosphor, La6-Ba4(SiO4)6F2: xSm3+ - Structure, luminescence and<br>energy transfer properties. Journal of Alloys and Compounds, 2018, 757, 79-86.                                                                                                                                   | 2.8 | 35        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Supersensitive Ratiometric Thermometry and Manometry Based on Dualâ€Emitting Centers in<br>Eu <sup>2+</sup> /Sm <sup>2+</sup> â€Đoped Strontium Tetraborate Phosphors. Advanced Optical<br>Materials, 2022, 10, .                                    | 3.6 | 35        |
| 38 | Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4: Yb3+, Er3+ nanoparticles. Journal of Luminescence, 2019, 209, 321-327.                                                           | 1.5 | 34        |
| 39 | Magnetic and luminescent hybrid nanomaterial based on Fe3O4 nanocrystals and GdPO4:Eu3+<br>nanoneedles. Journal of Nanoparticle Research, 2012, 14, 1188.                                                                                            | 0.8 | 33        |
| 40 | Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. Journal of Luminescence, 2020, 228, 117643.                                                   | 1.5 | 32        |
| 41 | Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based<br>on the lanthanide doped fluorides (Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 ). Journal of Luminescence, 2016, 170,<br>484-490.                         | 1.5 | 31        |
| 42 | Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power. Nanoscale, 2021, 13, 14139-14146.                                                                | 2.8 | 31        |
| 43 | Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials – KY 3 F 10<br>:Yb 3+ ,Tm 3+ /SiO 2 -NH 2 /Au. Journal of Luminescence, 2017, 186, 199-204.                                                                  | 1.5 | 30        |
| 44 | Gold nanorods as a high-pressure sensor of phase transitions and refractive-index gauge. Nanoscale, 2019, 11, 8718-8726.                                                                                                                             | 2.8 | 29        |
| 45 | Luminescent–Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures.<br>ACS Omega, 2018, 3, 10383-10390.                                                                                                                 | 1.6 | 25        |
| 46 | Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods –<br>Up-conversion luminescence tuning and morphology transformation after NIR laser irradiation.<br>Journal of Alloys and Compounds, 2018, 762, 621-630. | 2.8 | 25        |
| 47 | Luminescent Nd <sup>3+</sup> â€Based Microresonators Working as Optical Vacuum Sensors. Advanced<br>Optical Materials, 2020, 8, 2000678.                                                                                                             | 3.6 | 25        |
| 48 | Optical Sensing by Metamaterials and Metasurfaces: From Physics to Biomolecule Detection. Advanced<br>Optical Materials, 2022, 10, .                                                                                                                 | 3.6 | 24        |
| 49 | Nanosized complex fluorides based on Eu3+ doped Sr2LnF7 (Ln=La, Gd). Journal of Rare Earths, 2014, 32, 242-247.                                                                                                                                      | 2.5 | 23        |
| 50 | Eu <sup>2+</sup> emission from thermally coupled levels – new frontiers for ultrasensitive<br>luminescence thermometry. Journal of Materials Chemistry C, 2022, 10, 1220-1227.                                                                       | 2.7 | 23        |
| 51 | Luminescent-plasmonic effects in GdPO 4 :Eu 3+ nanorods covered with silver nanoparticles. Journal of Luminescence, 2017, 188, 24-30.                                                                                                                | 1.5 | 20        |
| 52 | Pressure and temperature optical sensors: luminescence of lanthanide-doped nanomaterials for contactless nanomanometry and nanothermometry. , 2020, , 227-273.                                                                                       |     | 20        |
| 53 | Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3:Tb3+/SiO2.<br>Journal of Rare Earths, 2011, 29, 1117-1122.                                                                                                           | 2.5 | 19        |
| 54 | Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional<br>(magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates.<br>Journal of Nanoparticle Research, 2015, 17, 1.     | 0.8 | 18        |

MARCIN RUNOWSKI

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bifunctional magnetic-upconverting luminescent cellulose fibers for anticounterfeiting purposes.<br>Journal of Alloys and Compounds, 2020, 829, 154456.                                                                           | 2.8 | 17        |
| 56 | NIR emission of lanthanides for ultrasensitive luminescence manometry—Er <sup>3+</sup> -activated optical sensor of high pressure. Dalton Transactions, 2021, 50, 14864-14871.                                                    | 1.6 | 16        |
| 57 | Upconversion luminescence in cellulose composites (fibres and paper) modified with<br>lanthanide-doped SrF <sub>2</sub> nanoparticles. Journal of Materials Chemistry C, 2020, 8,<br>11922-11928.                                 | 2.7 | 15        |
| 58 | Synthesis, structural and spectroscopic studies on GdBO3:Yb3+/Tb3+@SiO2 core-shell nanostructures. Journal of Rare Earths, 2015, 33, 1148-1154.                                                                                   | 2.5 | 14        |
| 59 | Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ions. Optical Materials, 2018, 83, 245-251.                     | 1.7 | 14        |
| 60 | Luminescent-plasmonic core–shell microspheres, doped with Nd3+ and modified with gold<br>nanoparticles, exhibiting whispering gallery modes and SERS activity. Journal of Rare Earths, 2019, 37,<br>1152-1156.                    | 2.5 | 14        |
| 61 | Multiple ratiometric nanothermometry operating with Stark thermally and non-thermally-coupled<br>levels in upconverting Y2â^'xMoO6:xEr3+ nanoparticles. Journal of Alloys and Compounds, 2021, 864,<br>158891.                    | 2.8 | 14        |
| 62 | Boltzmann vs. non-Boltzmann (non-linear) thermometry - Yb3+-Er3+ activated dual-mode thermometer<br>and phase transition sensor via second harmonic generation. Journal of Alloys and Compounds, 2022,<br>906, 164329.            | 2.8 | 14        |
| 63 | Pressure-driven configurational crossover between 4f7 and 4f65d1 States – Giant enhancement of narrow Eu2+ UV-Emission lines in SrB4O7 for luminescence manometry. Acta Materialia, 2022, 231, 117886.                            | 3.8 | 14        |
| 64 | Nanocrystalline rare earth fluorides doped with Pr3+ ions. Journal of Rare Earths, 2016, 34, 802-807.                                                                                                                             | 2.5 | 13        |
| 65 | Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. Journal of Rare Earths, 2016, 34, 808-813.                                                                              | 2.5 | 13        |
| 66 | Up-conversion green emission of Yb 3+ /Er 3+ ions doped YVO 4 nanocrystals obtained via modified<br>Pechini's method. Optical Materials, 2017, 74, 128-134.                                                                       | 1.7 | 13        |
| 67 | Influence of matrix on the luminescence properties of Eu2+/Eu3+ doped strontium borates: SrB4O7, SrB2O4 and Sr3(BO3)2, exhibiting multicolor tunable emission. Journal of Alloys and Compounds, 2020, 822, 153511.                | 2.8 | 13        |
| 68 | High-pressure luminescence of monoclinic and triclinic GdBO3: Eu3+. Ceramics International, 2020, 46, 26368-26376.                                                                                                                | 2.3 | 13        |
| 69 | Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydrate<br>Polymers, 2022, 279, 119010.                                                                                              | 5.1 | 13        |
| 70 | Y <sub>2</sub> (Ge,Si)O <sub>5</sub> :Pr phosphors: multimodal temperature and pressure sensors<br>shaped by bandgap management. Journal of Materials Chemistry C, 2021, 9, 13818-13831.                                          | 2.7 | 10        |
| 71 | Functionalization of cellulose fibers and paper with lanthanide-based luminescent core/shell<br>nanoparticles providing 3-level protection for advanced anti-counterfeiting purposes. Materials and<br>Design, 2022, 218, 110684. | 3.3 | 10        |
| 72 | Semiempirical and DFT computations of the influence of Tb(III) dopant on unit cell dimensions of cerium(III) fluoride. Journal of Computational Chemistry, 2015, 36, 193-199.                                                     | 1.5 | 7         |

MARCIN RUNOWSKI

| #  | ARTICLE                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Stress to distress: Triboluminescence and pressure luminescence of lanthanide diketonates. Chemical<br>Engineering Journal Advances, 2022, 11, 100326.                                                                                       | 2.4 | 6         |
| 74 | Tunable yellow-green up-conversion emission and luminescence lifetimes in Yb3+-Er3+-Ho3+<br>multi-doped β-NaLuF4 crystals. Journal of Alloys and Compounds, 2019, 793, 96-106.                                                               | 2.8 | 5         |
| 75 | Surface Modification of Luminescent Ln <sup>III</sup> Fluoride Core–Shell Nanoparticles with<br>Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and <i>in Vitro</i> Hemocompatibility Studies.<br>ChemMedChem, 2020, 15, 1490-1496. | 1.6 | 5         |
| 76 | 3,5-Dihydroxy Benzoic Acid-Capped CaF2:Tb3+ Nanocrystals as Luminescent Probes for the WO42– Ion in Aqueous Solution. ACS Omega, 2020, 5, 4568-4575.                                                                                         | 1.6 | 5         |
| 77 | Manipulating concentration quenching and thermal stability of Eu3+-activated NaYbF4 nanoparticles via phase transition strategy toward diversified applications. Materials Today Chemistry, 2022, 26, 101013.                                | 1.7 | 5         |
| 78 | Adenosine capped CaF2:Eu3+ nanocrystals and their applications in permanganate detection. Optical Materials, 2020, 107, 110048.                                                                                                              | 1.7 | 4         |
| 79 | Ratiometric Upconversion Temperature Sensor Based on Cellulose Fibers Modified with Yttrium<br>Fluoride Nanoparticles. Nanomaterials, 2022, 12, 1926.                                                                                        | 1.9 | 4         |
| 80 | Synthesis of highly luminescent nanocomposite LaF3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission. Chemical Papers, 2019, 73, 2907-2911.                                                                                  | 1.0 | 3         |
| 81 | Generation of Pure Green Up-Conversion Luminescence in Er3+ Doped and Yb3+-Er3+ Co-Doped YVO4<br>Nanomaterials under 785 and 975 nm Excitation. Nanomaterials, 2022, 12, 799.                                                                | 1.9 | 3         |
| 82 | Tailoring of polychromatic emissions in Tb3+/Eu3+ codoped NaYbF4 nanoparticles via energy transfer strategy for white light-emitting diodes. Materials Today Chemistry, 2022, 24, 100916.                                                    | 1.7 | 3         |
| 83 | Unusual solidification and phosphate binding to benzimidazole cations in the presence of water. New<br>Journal of Chemistry, 2012, 36, 823.                                                                                                  | 1.4 | 2         |
| 84 | Investigation on various emission colours in composite materials based on carbon and luminophors doped with lanthanide ions. Polyhedron, 2022, 223, 115953.                                                                                  | 1.0 | 0         |