
Raymond T Tung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038976/publications.pdf Version: 2024-02-01

RAYMOND T TUNC

#	Article	IF	CITATIONS
1	Recent advances in Schottky barrier concepts. Materials Science and Engineering Reports, 2001, 35, 1-138.	14.8	1,041
2	The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1, .	5.5	931
3	Chemical Bonding and Fermi Level Pinning at Metal-Semiconductor Interfaces. Physical Review Letters, 2000, 84, 6078-6081.	2.9	346
4	Formation of an electric dipole at metal-semiconductor interfaces. Physical Review B, 2001, 64, .	1.1	275
5	Controlling Semiconductor/Metal Junction Barriers by Incomplete, Nonideal Molecular Monolayers. Journal of the American Chemical Society, 2006, 128, 6854-6869.	6.6	102
6	Tuning the Electrical Properties of Si Nanowire Fieldâ€Effect Transistors by Molecular Engineering. Small, 2009, 5, 2761-2769.	5.2	80
7	Controlling Au/n-GaAs junctions by partial molecular monolayers. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3438-3451.	0.8	26
8	Charge Density and Band Offsets at Heterovalent Semiconductor Interfaces. Advanced Theory and Simulations, 2018, 1, 1700001.	1.3	20
9	Band offset formation at semiconductor heterojunctions through density-based minimization of interface energy. Physical Review B, 2016, 94, .	1.1	17
10	Controlled modification of Schottky barrier height by partisan interlayer. Solid State Communications, 2011, 151, 1641-1644.	0.9	14
11	Inhomogeneous ohmic contacts: Barrier height and contact area determination. Applied Physics Letters, 2012, 101, 051604.	1.5	12
12	Effect of metal interaction on the Schottky barrier height on adsorbate-terminated silicon surfaces. Applied Surface Science, 2013, 284, 720-725.	3.1	11
13	Schottky barrier height systematics studied by partisan interlayer. Thin Solid Films, 2014, 557, 254-257.	0.8	10
14	Quantitative explanation of the Schottky barrier height. Physical Review B, 2021, 103, .	1.1	10
15	Bidirectional Control of Silicon's Surface Potential by Means of Molecular Coverage. Journal of Physical Chemistry C, 2010, 114, 18674-18678.	1.5	9
16	Bulklike band-offset mystery solved through energy minimization: Lessons from perovskite oxide heterojunctions. Physical Review B, 2019, 99, .	1.1	8
17	Modification of Schottky barrier height on Si (111) by Ga-termination. Surface Science, 2013, 610, 48-52.	0.8	7
18	Fermi level pinning for zinc-blende semiconductors explained with interface bonds. Physical Review B, 2021, 103, .	1.1	7

#	Article	IF	CITATIONS
19	From NiSi2 experiments to density functional theory calculations: How the Schottky barrier mystery was solved. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	1
20	Combined UHV and Liquid Phase (CULP) Processing of Self-assembled Nanostructures. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0