Xiaofei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038758/publications.pdf Version: 2024-02-01

XIAOFEI LI

#	Article	IF	CITATIONS
1	Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnology Advances, 2022, 54, 107808.	11.7	25
2	Development of Whole Genomeâ€Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in <i>Shewanella oneidensis</i> MRâ€1. Advanced Biology, 2022, 6, e2101296.	2.5	6
3	Engineering Shewanella carassii, a newly isolated exoelectrogen from activated sludge, to enhance methyl orange degradation and bioelectricity harvest. Synthetic and Systems Biotechnology, 2022, 7, 918-927.	3.7	9
4	Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Research, 2022, 219, 118553.	11.3	63
5	CRISPR/dCas9-RpoD-Mediated Simultaneous Transcriptional Activation and Repression in <i>Shewanella oneidensis</i> MR-1. ACS Synthetic Biology, 2022, 11, 2184-2192.	3.8	6
6	Type I-F CRISPR-PAIR platform for multi-mode regulation to boost extracellular electron transfer in Shewanella oneidensis. IScience, 2022, 25, 104491.	4.1	4
7	Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2021, 53, 107682.	11.7	130
8	Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials, 2021, 2, .	6.9	46
9	Construction of an Acetate Metabolic Pathway to Enhance Electron Generation of Engineered Shewanella oneidensis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 757953.	4.1	3
10	Metabolic engineering of <i>Bacillus subtilis</i> for highâ€ŧiter production of menaquinoneâ€7. AICHE Journal, 2020, 66, e16754.	3.6	16
11	Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer. Synthetic and Systems Biotechnology, 2020, 5, 304-313.	3.7	58
12	Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62, 72-83.	7.0	48
13	Construction of Functionally Compartmental Inorganic Photocatalyst–Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO ₂ to Formic Acid. ACS Applied Materials & Interfaces, 2020, 12, 34795-34805.	8.0	71
14	sRNA-Based Screening Chromosomal Gene Targets and Modular Designing <i>Escherichia coli</i> for High-Titer Production of Aglycosylated Immunoglobulin G. ACS Synthetic Biology, 2020, 9, 1385-1394.	3.8	5
15	Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnology for Biofuels, 2020, 13, 36.	6.2	16
16	Abiotic–Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels. Transactions of Tianjin University, 2020, 26, 237-247.	6.4	15
17	De Novo High-Titer Production of Delta-Tocotrienol in Recombinant <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 7710-7717.	5.2	8
18	Synthetic sRNAâ€Based Engineering of <i>Escherichia coli</i> for Enhanced Production of Full‣ength Immunoglobulin G. Biotechnology Journal, 2020, 15, e1900363.	3.5	10

Xiaofei Li

#	Article	IF	CITATIONS
19	Electricity-driven 7α-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast. Catalysis Science and Technology, 2019, 9, 4877-4887.	4.1	18
20	A thiophene-modified doubleshell hollow g-C ₃ N ₄ nanosphere boosts NADH regeneration <i>via</i> synergistic enhancement of charge excitation and separation. Catalysis Science and Technology, 2019, 9, 1911-1921.	4.1	35
21	Engineering Microbial Consortia for High-Performance Cellulosic Hydrolyzates-Fed Microbial Fuel Cells. Frontiers in Microbiology, 2019, 10, 409.	3.5	36
22	A Synthetic Plasmid Toolkit for Shewanella oneidensis MR-1. Frontiers in Microbiology, 2019, 10, 410.	3.5	51
23	Modular Pathway Engineering of <i>Bacillus subtilis</i> To Promote <i>De Novo</i> Biosynthesis of Menaquinone-7. ACS Synthetic Biology, 2019, 8, 70-81.	3.8	51
24	Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO ₂ Bioreduction by Engineered <i>Ralstonia eutropha</i> . ACS Catalysis, 2018, 8, 4429-4437.	11.2	95
25	Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of <i>Shewanella oneidensis</i> MR-1. ACS Synthetic Biology, 2018, 7, 885-895.	3.8	74
26	Engineering exoelectrogens by synthetic biology strategies. Current Opinion in Electrochemistry, 2018, 10, 37-45.	4.8	43
27	Synthetic <i>Klebsiella pneumoniae</i> â€ <i>Shewanella oneidensis</i> Consortium Enables Glycerolâ€Fed Highâ€Performance Microbial Fuel Cells. Biotechnology Journal, 2018, 13, e1700491.	3.5	30
28	Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nature Communications, 2018, 9, 3637.	12.8	116
29	Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 2391-2402.	3.8	40
30	CRISPRi–sRNA: Transcriptional–Translational Regulation of Extracellular Electron Transfer in <i>Shewanella oneidensis</i> . ACS Synthetic Biology, 2017, 6, 1679-1690.	3.8	76
31	Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnology for Biofuels, 2017, 10, 196.	6.2	59
32	Enhancing Bidirectional Electron Transfer of <i>Shewanella oneidensis</i> by a Synthetic Flavin Pathway. ACS Synthetic Biology, 2015, 4, 815-823.	3.8	219
33	Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chemical Communications, 2015, 51, 4184-4187.	4.1	41
34	Enhanced <i>Shewanella</i> biofilm promotes bioelectricity generation. Biotechnology and Bioengineering, 2015, 112, 2051-2059.	3.3	129
35	Engineering Electrode-Attached Microbial Consortia for High-Performance Xylose-Fed Microbial Fuel Cell. ACS Catalysis, 2015, 5, 6937-6945.	11.2	61
36	Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. Electrochemistry Communications, 2012, 19, 13-16.	4.7	60