
Azusa Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7038513/publications.pdf Version: 2024-02-01

AZUSA INOUE

#	Article	IF	CITATIONS
1	Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes and Development, 2022, , .	2.7	13
2	H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nature Genetics, 2021, 53, 539-550.	9.4	77
3	Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Science Advances, 2019, 5, eaay7246.	4.7	83
4	Loss of Ikbkap/Elp1 in mouse oocytes causes spindle disorganization, developmental defects in preimplantation embryos and impaired female fertility. Scientific Reports, 2019, 9, 18875.	1.6	6
5	Maternal <i>Eed</i> knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes and Development, 2018, 32, 1525-1536.	2.7	93
6	Reprogramming of Chromatin Accessibility in Somatic Cell Nuclear Transfer Is DNA Replication Independent. Cell Reports, 2018, 23, 1939-1947.	2.9	30
7	Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes and Development, 2017, 31, 511-523.	2.7	45
8	Genomic imprinting of <i>Xist</i> by maternal H3K27me3. Genes and Development, 2017, 31, 1927-1932.	2.7	118
9	Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 2017, 547, 419-424.	13.7	349
10	Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development. Cell, 2016, 165, 1375-1388.	13.5	254
11	Haploinsufficiency, but Not Defective Paternal 5mC Oxidation, Accounts for the Developmental Defects of Maternal Tet3 Knockouts. Cell Reports, 2015, 10, 463-470.	2.9	38
12	Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation. Cell, 2014, 159, 884-895.	13.5	382
13	Tet3 and DNA Replication Mediate Demethylation of Both the Maternal and Paternal Genomes in Mouse Zygotes. Cell Stem Cell, 2014, 15, 459-471.	5.2	191
14	Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nature Structural and Molecular Biology, 2014, 21, 609-616.	3.6	137
15	Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Research, 2012, 22, 1640-1649.	5.7	45
16	Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Research, 2011, 21, 1670-1676.	5.7	244
17	Replication-Dependent Loss of 5-Hydroxymethylcytosine in Mouse Preimplantation Embryos. Science, 2011, 334, 194-194.	6.0	435