Muhammad Asyraf Muhammad Rizal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703788/publications.pdf Version: 2024-02-01

MUHAMMAD ASYRAF

#	Article	IF	CITATIONS
1	A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers, 2021, 13, 646.	4.5	213
2	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	4.5	208
3	Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 2021, 13, 1047.	4.5	195
4	Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers, 2021, 13, 231.	4.5	192
5	Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers, 2021, 13, 423.	4.5	173
6	Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 2022, 14, 202.	4.5	157
7	A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers, 2021, 13, 2170.	4.5	143
8	Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers, 2021, 13, 2710.	4.5	143
9	Sugar palm (<i>Arenga pinnata</i> [<i>Wurmb</i> .] <i>Merr</i>) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polymer Composites, 2020, 41, 459-467.	4.6	129
10	Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (<i>Arenga pinnata (Wurmb.) Merr</i>). Textile Reseach Journal, 2021, 91, 152-167.	2.2	127
11	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	4.5	121
12	Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers, 2022, 14, 874.	4.5	110
13	Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers, 2021, 13, 2623.	4.5	104
14	Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. Journal of Materials Research and Technology, 2020, 9, 6759-6776.	5.8	102
15	Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers, 2021, 13, 1701.	4.5	101
16	Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials, 2021, 11, 2186.	4.1	101
17	Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose, 2021, 28, 2675-2695.	4.9	95
18	Mechanical properties of oil palm fibre-reinforced polymer composites: a review. Journal of Materials Research and Technology, 2022, 17, 33-65.	5.8	92

MUHAMMAD ASYRAF

#	Article	IF	CITATIONS
19	Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers, 2021, 13, 1917.	4.5	88
20	Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. International Journal of Polymer Science, 2020, 2020, 1-15.	2.7	80
21	Integration of <scp>TRIZ</scp> , morphological chart and <scp>ANP</scp> method for development of <scp>FRP</scp> composite portable fire extinguisher. Polymer Composites, 2020, 41, 2917-2932.	4.6	78
22	Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers, 2021, 13, 3365.	4.5	67
23	Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: a review. Journal of Materials Research and Technology, 2022, 19, 167-182.	5.8	62
24	Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique. Journal of Materials Research and Technology, 2019, 8, 5647-5658.	5.8	60
25	Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings, 2021, 11, 1355.	2.6	60
26	Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability, 2021, 13, 4441.	3.2	53
27	Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International Journal of Biological Macromolecules, 2021, 193, 1587-1599.	7.5	53
28	Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers, 2022, 14, 920.	4.5	53
29	Comparison of Static and Long-term Creep Behaviors between Balau Wood and Class Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers and Polymers, 2021, 22, 793-803.	2.1	50
30	Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach. Journal of Materials Research and Technology, 2020, 9, 2357-2368.	5.8	48
31	Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses. Polymers, 2021, 13, 620.	4.5	42
32	Reflections on Local Community Identity by Evaluating Heritage Sustainability Protection in Jugra, Selangor, Malaysia. Sustainability, 2021, 13, 8705.	3.2	38
33	Influence of CaCO3 in pultruded glass fiber/unsaturated polyester resin composite on flexural creep behavior using conventional and time-temperature superposition principle methods. Polimery, 2020, 65, 792-800.	0.7	38
34	Effect of Kenaf Alkalization Treatment on Morphological and Mechanical Properties of Epoxy/Silica/Kenaf Composite. International Journal of Engineering and Technology(UAE), 2018, 7, 258.	0.3	36
35	Effect of Marble Dust on the Mechanical, Morphological, and Wear Performance of Basalt Fibre-Reinforced Epoxy Composites for Structural Applications. Polymers, 2022, 14, 1325.	4.5	36
36	Influence of Additional Bracing Arms as Reinforcement Members in Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Applied Sciences (Switzerland), 2021, 11, 2061.	2.5	34

MUHAMMAD ASYRAF

#	Article	IF	CITATIONS
37	Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polymer Bulletin, 2023, 80, 1059-1084.	3.3	33
38	Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm Component: A Review on Recent Progress and Its Mechanical Properties. Polymers, 2021, 13, 1341.	4.5	30
39	Advances of composite cross arms with incorporation of material core structures: Manufacturability, recent progress and views. Journal of Materials Research and Technology, 2021, 13, 1115-1131.	5.8	29
40	Creep test rig for cantilever beam: Fundamentals, prospects and present views. Journal of Mechanical Engineering and Sciences, 2020, 14, 6869-6887.	0.6	27
41	Flexural Creep Behaviour of Pultruded GFRP Composites Cross-Arm: A Comparative Study on the Effects of Stacking Sequence. Polymers, 2022, 14, 1330.	4.5	25
42	Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. Materials, 2022, 15, 3852.	2.9	24
43	Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. , 2020, , 65-88.		23
44	Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure. Advances in Civil Engineering, 2020, 2020, 1-10.	0.7	23
45	Potential of Flax Fiber Reinforced Biopolymer Composites for Cross-Arm Application in Transmission Tower: A Review. Fibers and Polymers, 2022, 23, 853-877.	2.1	23
46	Effects of Elevated Temperature on the Residual Behavior of Concrete Containing Marble Dust and Foundry Sand. Materials, 2022, 15, 3632.	2.9	23
47	Mechanical performance evaluation of bamboo fibre reinforced polymer composites and its applications: a review. Functional Composites and Structures, 2022, 4, 015009.	3.4	22
48	Emerging Developments on Nanocellulose as Liquid Crystals: A Biomimetic Approach. Polymers, 2022, 14, 1546.	4.5	22
49	Mechanical properties of sugar palm lignocellulosic fibre reinforced polymer composites: a review. Cellulose, 2022, 29, 6493-6516.	4.9	21
50	Creep behaviour monitoring of short-term duration for fiber-glass reinforced composite cross-arms with unsaturated polyester resin samples using conventional analysis. Journal of Mechanical Engineering and Sciences, 2020, 14, 7361-7368.	0.6	20
51	Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a review. Functional Composites and Structures, 2021, 3, 045003.	3.4	20
52	FUNDAMENTALS OF CREEP, TESTING METHODS AND DEVELOPMENT OF TEST RIG FOR THE FULL-SCALE CROSSARM: A REVIEW. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.4	19
53	Performance Analysis of Full Assembly Glass Fiber-Reinforced Polymer Composite Cross-Arm in Transmission Tower. Polymers, 2022, 14, 1563.	4.5	19
54	Oxygen permeability properties of nanocellulose reinforced biopolymer nanocomposites. Materials Today: Proceedings, 2022, 52, 2414-2419.	1.8	16

#	Article	IF	CITATIONS
55	Preference Index of Sustainable Natural Fibers in Stone Matrix Asphalt Mixture Using Waste Marble. Materials, 2022, 15, 2729.	2.9	16
56	Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale) Tj ETQq0 0 () rgBT/Ov	erlock 10 Tf 50
57	Morphological, Physical, and Mechanical Properties of Sugar-Palm (Arenga pinnata (Wurmb)) Tj ETQq1 1 0.784	814 rgBT / 2.9	Overlock 10 T
58	Comparative Drug Release Investigations for Diclofenac Sodium Drug (DS) by Chitosan-Based Grafted and Crosslinked Copolymers. Materials, 2022, 15, 2404.	2.9	14
59	Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test. International Journal of Molecular Sciences, 2022, 23, 6338.	4.1	13
60	Impact of Process Variables of Acetone Vapor Jet Drilling on Surface Roughness and Circularity of 3D-Printed ABS Parts: Fabrication and Studies on Thermal, Morphological, and Chemical Characterizations. Polymers, 2022, 14, 1367.	4.5	12
61	Development of Natural Fibre-Reinforced Polymer Composites Ballistic Helmet Using Concurrent Engineering Approach: A Brief Review. Sustainability, 2022, 14, 7092.	3.2	12
62	Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. , 2021, , 51-105.		10
63	Advanced Composite in Aerospace Applications: Opportunities, Challenges, and Future Perspective. , 2022, , 471-498.		9
64	Developments in Nanoparticles Enhanced Biofuels and Solar Energy in Malaysian Perspective: A Review of State of the Art. Journal of Nanomaterials, 2022, 2022, 1-22.	2.7	7
65	Roselle: Production, Product Development, and Composites. , 2021, , 1-23.		6
66	Implementation of design for sustainability in developing trophy plaque using green kenaf polymer composites. , 2021, , 85-103.		3
67	Development of Roselle Fiber-Reinforced Polymer Biocomposite Mug Pad Using the Hybrid Design for Sustainability and Pugh Method. , 2021, , 197-213.		3
68	Introduction to Biofiller-Reinforced Degradable Polymer Composites. , 2020, , 1-23.		3
69	Introduction to nanocellulose production from biological waste. , 2022, , 1-37.		2
70	Application of Design for Sustainability to Develop Smartphone Holder Using Roselle Fiber-Reinforced Polymer Composites. , 2021, , 177-196.		1
71	Development and Characterization of Roselle Nanocellulose and Its Potential in Reinforced Nanocomposites. , 2021, , 285-317.		1
72	Design for Safety in Composites. Composites Science and Technology, 2022, , 95-113.	0.6	0

#	Article	IF	CITATIONS
73	Composites and Biocomposites: Manufacturing and Processing. Composites Science and Technology, 2022, , 15-33.	0.6	0
74	Safety in Composite Laboratory. Composites Science and Technology, 2022, , 67-94.	0.6	0