Tomas Radivoyevitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7037629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of clonal evolution in myelodysplastic syndromes. Nature Genetics, 2017, 49, 204-212.	21.4	348
2	Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood, 2014, 124, 1790-1798.	1.4	204
3	Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia, 2016, 30, 2214-2220.	7.2	141
4	Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insight, 2018, 3, .	5.0	137
5	Radioprotection of <i>IDH1</i> -Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Research, 2015, 75, 4790-4802.	0.9	127
6	The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 326-341.	7.4	118
7	Increased CDA Expression/Activity in Males Contributes to Decreased Cytidine Analog Half-Life and Likely Contributes to Worse Outcomes with 5-Azacytidine or Decitabine Therapy. Clinical Cancer Research, 2013, 19, 938-948.	7.0	115
8	Risk of Hematologic Malignancies After Radioiodine Treatment of Well-Differentiated Thyroid Cancer. Journal of Clinical Oncology, 2018, 36, 1831-1839.	1.6	112
9	Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Medicine, 2017, 14, e1002382.	8.4	107
10	Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. Journal of Clinical Investigation, 2018, 128, 4260-4279.	8.2	97
11	Bleeding incidence and risk factors among cancer patients treated with anticoagulation. American Journal of Hematology, 2019, 94, 780-785.	4.1	92
12	Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nature Communications, 2017, 8, 15102.	12.8	88
13	Genomic determinants of chronic myelomonocytic leukemia. Leukemia, 2017, 31, 2815-2823.	7.2	85
14	Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight, 2019, 4, .	5.0	82
15	<i>IDH1/2</i> Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors. Clinical Cancer Research, 2018, 24, 1705-1715.	7.0	80
16	Evaluation of noncytotoxic DNMT1-depleting therapy in patients with myelodysplastic syndromes. Journal of Clinical Investigation, 2015, 125, 1043-1055.	8.2	79
17	Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia, 2015, 29, 2134-2142.	7.2	77
18	Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leukemia and Lymphoma, 2018, 59, 416-422.	1.3	72

#	Article	IF	CITATIONS
19	p53 Independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia, 2011, 25, 1739-1750.	7.2	64
20	Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation. Leukemia, 2016, 30, 285-294.	7.2	64
21	Adding molecular data to prognostic models can improve predictive power in treated patients with myelodysplastic syndromes. Leukemia, 2017, 31, 2848-2850.	7.2	62
22	Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia, 2021, 35, 1023-1036.	7.2	62
23	Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood, 2020, 136, 2249-2262.	1.4	59
24	Rational management approach to pure red cell aplasia. Haematologica, 2018, 103, 221-230.	3.5	57
25	Consequences of mutant TET2 on clonality and subclonal hierarchy. Leukemia, 2018, 32, 1751-1761.	7.2	54
26	Invariant patterns of clonal succession determine specific clinical features of myelodysplastic syndromes. Nature Communications, 2019, 10, 5386.	12.8	53
27	p53-Independent, Normal Stem Cell Sparing Epigenetic Differentiation Therapy for Myeloid and Other Malignancies. Seminars in Oncology, 2012, 39, 97-108.	2.2	51
28	Risk of acute myeloid leukemia and myelodysplastic syndrome after autotransplants for lymphomas and plasma cell myeloma. Leukemia Research, 2018, 74, 130-136.	0.8	47
29	Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. Blood, 2018, 132, 2309-2313.	1.4	38
30	Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia. Blood Advances, 2019, 3, 339-349.	5.2	36
31	A Therapeutic Strategy for Preferential Targeting of <i>TET2</i> -Mutant and TET Dioxygenase–Deficient Cells in Myeloid Neoplasms. Blood Cancer Discovery, 2021, 2, 146-161.	5.0	36
32	GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. Journal of Clinical Investigation, 2017, 127, 3527-3542.	8.2	35
33	Runx1 Regulation of Pu.1 Corepressor/Coactivator Exchange Identifies Specific Molecular Targets for Leukemia Differentiation Therapy. Journal of Biological Chemistry, 2014, 289, 14881-14895.	3.4	33
34	Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia. Blood, 2021, 138, 1885-1895.	1.4	32
35	Molecular predictors of response in patients with myeloid neoplasms treated with lenalidomide. Leukemia, 2016, 30, 2405-2409.	7.2	31
36	Risk of developing chronic myeloid neoplasms in well-differentiated thyroid cancer patients treated with radioactive iodine. Leukemia, 2018, 32, 952-959.	7.2	30

Tomas Radivoyevitch

#	Article	IF	CITATIONS
37	Do persons with chronic myeloid leukaemia have normal or near normal survival?. Leukemia, 2020, 34, 333-335.	7.2	30
38	Context dependent effects of ascorbic acid treatment in TET2 mutant myeloid neoplasia. Communications Biology, 2020, 3, 493.	4.4	30
39	Sex differences in the incidence of chronic myeloid leukemia. Radiation and Environmental Biophysics, 2014, 53, 55-63.	1.4	29
40	Subclonal STAT3 mutations solidify clonal dominance. Blood Advances, 2019, 3, 917-921.	5.2	28
41	Radioactive Iodine Treatment of Thyroid Cancer and Risk of Myelodysplastic Syndromes. Blood, 2015, 126, 612-612.	1.4	28
42	Quantitative modeling of chronic myeloid leukemia: insights from radiobiology. Blood, 2012, 119, 4363-4371.	1.4	26
43	Genomics of therapy-related myeloid neoplasms. Haematologica, 2020, 105, e98-e101.	3.5	23
44	Preclinical Modeling of Surgery and Steroid Therapy for Glioblastoma Reveals Changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clinical Cancer Research, 2021, 27, 2038-2049.	7.0	22
45	Biologically based risk estimation for radiation-induced CML. Radiation and Environmental Biophysics, 2001, 40, 1-9.	1.4	21
46	BRCC3 mutations in myeloid neoplasms. Haematologica, 2015, 100, 1051-7.	3.5	20
47	Molecular features of early onset adult myelodysplastic syndrome. Haematologica, 2017, 102, 1028-1034.	3.5	20
48	The relationship between eligibility criteria and adverse events in randomized controlled trials of hematologic malignancies. Leukemia, 2017, 31, 1808-1815.	7.2	20
49	Mathematical analysis of DNA fragment distribution models used with pulsed-field gel electrophoresis for DNA double-strand break calculations. Electrophoresis, 1996, 17, 1087-1093.	2.4	19
50	Estimating Cured Fractions of Uveal Melanoma. JAMA Ophthalmology, 2021, 139, 174.	2.5	18
51	Methods for analysis of DNA fragment distributions on pulsed field gel electrophoretic gels. Electrophoresis, 1996, 17, 1080-1086.	2.4	17
52	Why is there so much therapy-related AML and MDS and so little therapy-related CML?. Leukemia Research, 2014, 38, 1162-1164.	0.8	17
53	Extended experience with a non ytotoxic DNMT1â€ŧargeting regimen of decitabine to treat myeloid malignancies. British Journal of Haematology, 2020, 188, 924-929.	2.5	15
54	The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer Journal, 2016, 6, e510-e510.	6.2	14

#	Article	IF	CITATIONS
55	Long-Term Outcomes of Hairy Cell Leukemia Treated With Purine Analogs: A Comparison With the General Population. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 857-862.	0.4	13
56	Conditional Survival in Uveal Melanoma. Ophthalmology Retina, 2021, 5, 536-542.	2.4	13
57	The Risk of Chronic Myeloid Leukemia: Can the Dose–Response Curve be U-Shaped?. Radiation Research, 2002, 157, 106-109.	1.5	12
58	lonizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia. Leukemia Research, 2016, 43, 9-12.	0.8	12
59	Long-Term Deficits in Behavior Performances Caused by Low- and High-Linear Energy Transfer Radiation. Radiation Research, 2017, 188, 752-760.	1.5	12
60	Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 812-824.	3.8	12
61	A novel genetic and morphologic phenotype of ARID2-mediated myelodysplasia. Leukemia, 2018, 32, 839-843.	7.2	12
62	Uveal melanoma: Long-term survival. PLoS ONE, 2021, 16, e0250939.	2.5	12
63	Biologically-based risk estimation for radiation-induced chronic myeloid leukemia. Radiation and Environmental Biophysics, 2000, 39, 153-159.	1.4	11
64	The evolution of paroxysmal nocturnal haemoglobinuria depends on intensity of immunosuppressive therapy. British Journal of Haematology, 2018, 182, 730-733.	2.5	11
65	Clonal PIGA mosaicism and dynamics in paroxysmal nocturnal hemoglobinuria. Leukemia, 2018, 32, 2507-2511.	7.2	11
66	Modelling c-Abl Signalling in Activated Neutrophils: the Anti-inflammatory Effect of Seliciclib. BioDiscovery, 2013, 7, 4.	0.1	11
67	Modeling the low-LET dose-response of BCR–ABL formation: predicting stem cell numbers from A-bomb data. Mathematical Biosciences, 1999, 162, 85-101.	1.9	10
68	Distinct clinical and biological implications of various DNMT3A mutations in myeloid neoplasms. Leukemia, 2018, 32, 550-553.	7.2	10
69	Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure. Leukemia, 2019, 33, 1135-1147.	7.2	10
70	Distinctive and common features of moderate aplastic anaemia. British Journal of Haematology, 2020, 189, 967-975.	2.5	10
71	Impact of germline CTC 1 alterations on telomere length in acquired bone marrow failure. British Journal of Haematology, 2019, 185, 935-939.	2.5	9
72	PBRM1 loss in kidney cancer unbalances the proximal tubule master transcription factor hub to repress proximal tubule differentiation. Cell Reports, 2021, 36, 109747.	6.4	9

#	Article	IF	CITATIONS
73	Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 812-824.	3.8	9
74	Estimation of the target stem-cell population size in chronic myeloid leukemogenesis. Radiation and Environmental Biophysics, 1999, 38, 201-206.	1.4	8
75	A two-way interface between limited Systems Biology Markup Language and R. BMC Bioinformatics, 2004, 5, 190.	2.6	8
76	RE: Colorectal Cancer Incidence Patterns in the United States, 1974–2013. Journal of the National Cancer Institute, 2017, 109, .	6.3	8
77	New drugs for pharmacological extension of replicative life span in normal and progeroid cells. Npj Aging and Mechanisms of Disease, 2019, 5, 2.	4.5	8
78	A pilot clinical trial of oral tetrahydrouridine/decitabine for noncytotoxic epigenetic therapy of chemoresistant lymphoid malignancies. Seminars in Hematology, 2021, 58, 35-44.	3.4	7
79	On target cell numbers in radiation-induced H4 - RET mediated papillary thyroid cancer. Radiation and Environmental Biophysics, 2001, 40, 191-197.	1.4	6
80	Folate system correlations in DNA microarray data. BMC Cancer, 2005, 5, 95.	2.6	6
81	Equilibrium model selection: dTTP induced R1 dimerization. BMC Systems Biology, 2008, 2, 15.	3.0	6
82	Protons and High-Linear Energy Transfer Radiation Induce Genetically Similar Lymphomas With High Penetrance in a Mouse Model of the Aging Human Hematopoietic System. International Journal of Radiation Oncology Biology Physics, 2020, 108, 1091-1102.	0.8	6
83	Identification of gene expression determinants of radiosensitivity in bladder cancer (BC) cell lines Journal of Clinical Oncology, 2018, 36, e16507-e16507.	1.6	6
84	Time course solutions of the Sax-Markov binary eurejoining/misrejoining model of DNA double-strand breaks. Radiation and Environmental Biophysics, 2000, 39, 265-273.	1.4	5
85	Rational polynomial representation of ribonucleotide reductase activity. BMC Biochemistry, 2005, 6, 8.	4.4	5
86	Mass action models versus the Hill model: An analysis of tetrameric human thymidine kinase 1 positive cooperativity. Biology Direct, 2009, 4, 49.	4.6	5
87	Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: An analysis of ATP-induced ribonucleotide reductase R1 hexamerization data. Biology Direct, 2009, 4, 50.	4.6	5
88	A MATHEMATICAL MODEL OF HUMAN THYMIDINE KINASE 2 ACTIVITY. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 203-209.	1.1	5
89	The impact of socioeconomic disparities on the use of upfront autologous stem cell transplantation for mantle cell lymphoma. Leukemia and Lymphoma, 2022, 63, 335-343.	1.3	5
90	The Mechanism By Which Mutant Nucleophosmin (NPM1) Creates Leukemic Self-Renewal Is Readily Reversed. Blood, 2016, 128, 444-444.	1.4	5

#	Article	IF	CITATIONS
91	Biallelic TET2 Inactivation in Myeloid Neoplasia: From Clonal Hierarchy to Clinical Phenotypes. Blood, 2018, 132, 1805-1805.	1.4	5
92	A Mesenchymal Tumor Cell State Confers Increased Dependency on the BCL-XL Antiapoptotic Protein in Kidney Cancer. Clinical Cancer Research, 2022, 28, 4689-4701.	7.0	5
93	Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme. FEBS Letters, 2016, 590, 1704-1712.	2.8	4
94	Cell of Origin Determination in Diffuse Large B-Cell Lymphoma: Performance of Immunohistochemical (IHC) Algorithms and Ability to Predict Outcome. Blood, 2011, 118, 950-950.	1.4	4
95	On Model Ensemble Analyses of Nonmonotonic Data. Nucleosides, Nucleotides and Nucleic Acids, 2012, 31, 147-156.	1.1	3
96	Chronic myeloid leukemia: Two mysteries. Leukemia Research, 2019, 79, 3-5.	0.8	3
97	Non-Cytotoxic Differentiation Therapy Based On Mechanism of Disease Produces Complete Remission in Myelodysplastic Syndromes (MDS) with High Risk Cytogenetics. Blood, 2012, 120, 1696-1696.	1.4	3
98	Impact of Eltrombopag on Expansion of Clones with Somatic Mutations in Refractory Aplastic Anemia. Blood, 2015, 126, 300-300.	1.4	3
99	Ex Vivo Experiments Show That IDH1/2-Mutant Inhibitors Can be Safely Used As Adjuvants to Regular Chemotherapy in IDH1/2-Mutated Acute Myeloid Leukemia. Blood, 2015, 126, 3788-3788.	1.4	3
100	The Revised International Prognostic Scoring System "Molecular" (IPSS-Rm), a Validated and Dynamic Model in Treated Patients with Myelodysplastic Syndromes (MDS). Blood, 2015, 126, 607-607.	1.4	3
101	Whole-Exome Sequencing Identifies Germline IDH2 and IDH3 mutations That Predispose to Myeloid Neoplasms. Blood, 2015, 126, 1405-1405.	1.4	3
102	A pilot clinical trial of the cytidine deaminase inhibitor tetrahydrouridine combined with decitabine to target DNMT1 in advanced, chemorefractory pancreatic cancer. American Journal of Cancer Research, 2020, 10, 3047-3060.	1.4	3
103	Stochastic Process Pharmacodynamics: Dose Timing in Neonatal Gentamicin Therapy as an Example. AAPS Journal, 2015, 17, 447-456.	4.4	2
104	Evolutionary Dynamics of Chronic Myeloid Leukemia Progression: the Progression-Inhibitory Effect of Imatinib. AAPS Journal, 2016, 18, 914-922.	4.4	2
105	5-formylcytosine and 5-hydroxymethyluracil as surrogate markers of TET2 and SF3B1 mutations in myelodysplastic syndrome, respectively. Haematologica, 2020, 105, e213-e215.	3.5	2
106	Parameter perturbations in a post-treatment chronic myeloid leukemia model capture the essence of pre-diagnosis A-bomb survivor mysteries. Radiation and Environmental Biophysics, 2021, 60, 41-47.	1.4	2
107	Forty-Year Analysis of Randomized Clinical Trials in Patients with Acute Myeloid Leukemia Treated with Remission Induction Chemotherapy. Blood, 2016, 128, 2786-2786.	1.4	2
108	Clonal Dynamics of Refractory Aplastic Anemia in Patients Treated with Eltrombopag. Blood, 2016, 128, 3892-3892.	1.4	2

#	Article	IF	CITATIONS
109	Cardiac death rates after irradiation for esophageal cancer: An epidemiologic study among esophageal cancer survivors Journal of Clinical Oncology, 2017, 35, 4049-4049.	1.6	2
110	TET 2 Alterations in Myeloid Malignancies, Impact on Clinical Characteristics, Outcome, and Disease Predisposition. Blood, 2015, 126, 1645-1645.	1.4	1
111	Molecular Predictors of Response in Patients with Myeloid Neoplasms Treated with Lenalidomide. Blood, 2015, 126, 2853-2853.	1.4	1
112	Clinical Effects of IDH1/2-Mutant Inhibitors in IDH1/2-Mutated Acute Myeloid Leukemia and Myelodysplastic Syndrome Patients: Suggestions from Ex Vivo Experiments. Blood, 2016, 128, 4308-4308.	1.4	1
113	BRCA1 & BRCA2 Germline Variants Are Enriched in MDS/AML and Portend Higher Average Mutational Burden. Blood, 2018, 132, 4352-4352.	1.4	1
114	How to Use the Computing Environment R to Analyze ATP-Induced Ribonucleotide Reductase R1 Hexamerization Data. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 427-432.	1.1	0
115	Gender effects on cytidine analogue metabolism and myelodysplastic syndrome treatment outcomes. Nature Precedings, 2012, , .	0.1	Ο
116	Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria. Mechanisms of Ageing and Development, 2014, 138, 10-14.	4.6	0
117	IMMU-70. GLOBAL IMMUNE FINGERPRINTING IN GLIOBLASTOMA REVEALS IMMUNE-SUPPRESSION SIGNATURES ASSOCIATED WITH PROGNOSIS. Neuro-Oncology, 2018, 20, vi137-vi137.	1.2	Ο
118	Risk of hematologic malignancies after breast ductal carcinoma in situ treatment with ionizing radiation. Npj Breast Cancer, 2021, 7, 21.	5.2	0
119	A Proof of Principle Clinical Trial in Myelodysplastic Syndromes of Non-Cytotoxic Differentiation Therapy with Decitabine,. Blood, 2011, 118, 3830-3830.	1.4	Ο
120	Etiology and Treatment of Hematological Neoplasms: Stochastic Mathematical Models. Advances in Experimental Medicine and Biology, 2014, 844, 317-346.	1.6	0
121	Determinants of Phenotypic Commitment and Clonal ProgressionConclusions from the Study of Clonal Architecture in CMML. Blood, 2015, 126, 2848-2848.	1.4	Ο
122	Eligibility Criteria Are Not Associated with Expected or Observed Adverse Events in Randomized Controlled Trials (RCTs) of Hematologic Malignancies. Blood, 2015, 126, 635-635.	1.4	0
123	Characterization of the Mutational Spectrum in Young Patients with Myelodysplastic Syndrome. Blood, 2015, 126, 5218-5218.	1.4	Ο
124	The Complexity of Interpreting Genomic Data in Patients with Primary and Secondary Acute Myeloid Leukemia (AML). Blood, 2015, 126, 86-86.	1.4	0
125	Thirty-year analysis of randomized clinical trials in patients with acute myeloid leukemia Journal of Clinical Oncology, 2016, 34, 7032-7032.	1.6	0
126	Evolving Risk of Myelodysplastic Syndromes Among Adolescents and Young Adults Following Radiation Treatment for First Cancers in the United States, 1973 - 2014. Blood, 2016, 128, 4334-4334.	1.4	0

#	Article	IF	CITATIONS
127	Response-Adapted Therapy for Newly Diagnosed Myeloma. Blood, 2016, 128, 3606-3606.	1.4	0
128	UTX mutations in Myeloid Neoplasms. Blood, 2016, 128, 3148-3148.	1.4	0
129	Landscape of Subclonal Mutations in Myelodysplastic Syndromes (MDS) Allows for a Novel Hierarchy of Clonal Advantage By Combining Germline and Somatic Mutations. Blood, 2016, 128, 957-957.	1.4	0
130	Hospital readmission rate for febrile neutropenia (FN) following high dose cytarabine (HiDAC) consolidation chemotherapy for acute myeloid leukemia (AML) Journal of Clinical Oncology, 2017, 35, e18513-e18513.	1.6	0
131	The Mechanisms By Which Mutant-NPM1 Uncouples Differentiation from Proliferation Are Reversed By Several Drugs, Enabling Rational Multi-Component Non-Cytotoxic Differentiation Therapy. Blood, 2017, 130, 878-878.	1.4	0
132	How far have we really come? Trends in survival and mortality for gliomas between 1973 to 2014 from SEER Journal of Clinical Oncology, 2018, 36, 2038-2038.	1.6	0
133	Heterozygous CTC1 Variants in Acquired Bone Marrow Failure. Blood, 2018, 132, 3866-3866.	1.4	0
134	Survival Outcomes of Patients with Therapy-Related Myelodysplastic Syndromes in the United States. Blood, 2018, 132, 371-371.	1.4	0
135	Identification of gene expression determinants of radiosensitivity in bladder cancer (BCa) cell lines Journal of Clinical Oncology, 2019, 37, 470-470.	1.6	0
136	Recent data obtained by pulsed-field gel electrophoresis suggest two types of double-strand breaks. Radiation Research, 1998, 149, 52-8.	1.5	0
137	Misrejoining of double-strand breaks after X irradiation: relating moderate to very high doses by a Markov model. Radiation Research, 1998, 149, 59-67.	1.5	0