Elsa Martinez-Ferri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7037382/publications.pdf

Version: 2024-02-01

361413 361022 35 1,656 20 35 citations h-index g-index papers 35 35 35 2303 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Seed-Encapsulation of Desiccation-Tolerant Microorganisms for the Protection of Maize from Drought: Phenotyping Effects of a New Dry Bioformulation. Plants, 2022, 11, 1024.	3.5	1
2	Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes. Agronomy, 2021, 11, 261.	3.0	20
3	Improvement of Strawberry Irrigation Sustainability in Southern Spain Using FAO Methodology. Water (Switzerland), 2021, 13, 833.	2.7	4
4	Physiological and Molecular Responses of â€~Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. Plants, 2021, 10, 2077.	3.5	4
5	Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy, 2020, 10, 1242.	3.0	35
6	Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Bioscience, 2020, 37, 100680.	4.4	25
7	Consistency of organoleptic and yield related traits of strawberry cultivars over time. Journal of Berry Research, 2020, 10, 623-636.	1.4	4
8	Effectiveness of different depuration procedures in removing reagents interference on in vitro digested strawberry extracts for reliable antioxidant determinations. Journal of Berry Research, 2019, 9, 473-481.	1.4	2
9	Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC Plant Biology, 2019, 19, 458.	3.6	12
10	Yield and fruit quality of avocado trees under different regimes of water supply in the subtropical coast of Spain. Agricultural Water Management, 2019, 221, 192-201.	5.6	27
11	Light exposure affects fruit quality in different strawberry cultivars under field conditions. Scientia Horticulturae, 2019, 252, 291-297.	3.6	22
12	Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. PLoS ONE, 2019, 14, e0212359.	2.5	16
13	Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. BMC Genomics, 2019, 20, 1016.	2.8	18
14	Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Scientia Horticulturae, 2018, 231, 233-240.	3.6	18
15	Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chemistry, 2018, 248, 155-165.	8.2	76
16	â€~Nazaret' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1384-1386.	1.0	1
17	Strawberry and Achenes Hydroalcoholic Extracts and Their Digested Fractions Efficiently Counteract the AAPH-Induced Oxidative Damage in HepG2 Cells. International Journal of Molecular Sciences, 2018, 19, 2180.	4.1	10
18	Effects of in vitro gastrointestinal digestion on strawberry polyphenols stability. Acta Horticulturae, 2017, , 389-396.	0.2	7

#	Article	IF	CITATIONS
19	Strawberry Achenes Are an Important Source of Bioactive Compounds for Human Health. International Journal of Molecular Sciences, 2016, 17, 1103.	4.1	55
20	Nondestructive Detection of White Root Rot Disease in Avocado Rootstocks by Leaf Chlorophyll Fluorescence. Plant Disease, 2016, 100, 49-58.	1.4	13
21	Water relations, growth and physiological response of seven strawberry cultivars (Fragaria×ananassa Duch.) to different water availability. Agricultural Water Management, 2016, 164, 73-82.	5.6	35
22	Effects of harvest time on functional compounds and fruit antioxidant capacity in ten strawberry cultivars. Journal of Berry Research, 2015, 5, 71-80.	1.4	40
23	Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity. AoB PLANTS, 2015, 7, .	2.3	26
24	Increased antioxidant capacity in tomato by ectopic expression of the strawberry <scp>D</scp> â€∢i>galacturonate reductase gene. Biotechnology Journal, 2015, 10, 490-500.	3.5	26
25	Soil Water Balance Modelling Using SWAP. Outlook on Agriculture, 2013, 42, 93-102.	3.4	24
26	Incidence of Misshapen Fruits in Strawberry Plants Grown under Tunnels Is Affected by Cultivar, Planting Date, Pollination, and Low Temperatures. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1569-1573.	1.0	41
27	Fruit misshapen in strawberry cultivars (Fragaria×ananassa) is related to achenes functionality. Annals of Applied Biology, 2011, 158, 130-138.	2.5	35
28	Effects of Rootstock and Flushing on the Incidence of Three Insects on â€~Clementine de Nules' Citrus Trees. Environmental Entomology, 2008, 37, 1531-1537.	1.4	8
29	Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species. Tree Physiology, 2004, 24, 981-990.	3.1	70
30	Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems?. New Phytologist, 2002, 156, 457-467.	7.3	142
31	Title is missing!. Plant and Soil, 2002, 238, 111-122.	3.7	131
32	Title is missing!. Plant and Soil, 2002, 240, 343-352.	3.7	79
33	Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology, 2001, 15, 124-135.	3.6	153
34	Low leafâ€level response to light and nutrients in Mediterranean evergreen oaks: a conservative resourceâ€use strategy?. New Phytologist, 2000, 148, 79-91.	7.3	288
35	Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology, 2000, 20, 131-138.	3.1	188