Isabell Hensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703733/publications.pdf

Version: 2024-02-01

57	1,248 citations	331670 21 h-index	414414 32 g-index
papers	Citations	II-IIIQEX	g-muex
58 all docs	58 docs citations	58 times ranked	1287 citing authors

#	Article	IF	CITATIONS
1	The performance of <i>Polylepis australis</i> trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions, 2008, 14, 630-636.	4.1	76
2	Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecology and Management, 2004, 196, 327-333.	3.2	71
3	Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba, Argentina?. Forest Ecology and Management, 2005, 219, 229-241.	3.2	63
4	Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecology, 2007, 194, 207-221.	1.6	54
5	Soil conservation in <i>Polylepis</i> mountain forests of Central Argentina: Is livestock reducing our natural capital?. Austral Ecology, 2010, 35, 435-443.	1.5	52
6	Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, 2014, 25, 724-733.	2.2	48
7	Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 2014, 102, 659-666.	4.0	45
8	Recruitment of trees at tropical alpine treelines: <i>Erica</i> in Africa versus <i>Polylepis</i> in South America. Plant Ecology and Diversity, 2008, 1, 35-46.	2.4	43
9	Polylepis australis' regeneration niche in relation to seed dispersal, site characteristics and livestock density. Forest Ecology and Management, 2008, 254, 255-260.	3.2	43
10	Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world's highest tropical tree line species. Global Ecology and Biogeography, 2012, 21, 455-464.	5.8	43
11	Landscape Structural Complexity of Highâ€Mountain <i>Polylepis australis</i> Forests: A New Aspect of Restoration Goals. Restoration Ecology, 2011, 19, 390-398.	2.9	37
12	Spatial variation in tree demography associated to domestic herbivores and topography: Insights from a seeding and planting experiment. Forest Ecology and Management, 2015, 335, 139-146.	3.2	37
13	Germination ecology of Central Asian Stipa spp: differences among species, seed provenances, and the importance of field studies. Plant Ecology, 2008, 196, 269-280.	1.6	35
14	Postâ€Fire Population Dynamics of Two Tree Species in Highâ€Altitude <i>Polylepis</i> Forests of Central Ecuador. Biotropica, 2008, 40, 176-182.	1.6	35
15	Mating system, outcrossing distance effects and pollen availability in the wind-pollinated treeline species Polylepis australis BITT. (Rosaceae). Basic and Applied Ecology, 2009, 10, 52-60.	2.7	34
16	Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador. Journal of Tropical Ecology, 2007, 23, 309-318.	1.1	32
17	Habitat invasion risk assessment based on Landsat 5 data, exemplified by the shrub Rosa rubiginosa in southern Argentina. Austral Ecology, 2011, 36, 870-880.	1.5	26
18	The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges. Biological Invasions, 2016, 18, 1895-1910.	2.4	25

#	Article	IF	Citations
19	Seed germination of four Jordanian <i>Stipa</i> spp: differences in temperature regimes and seed provenances. Plant Species Biology, 2009, 24, 127-132.	1.0	24
20	Do we need livestock grazing to promote <i>Polylepis australis</i> tree recruitment in the Central Argentinean Mountains?. Ecological Research, 2009, 24, 1075-1081.	1.5	23
21	Agroforestry species of the Bolivian Andes: an integrated assessment of ecological, economic and socio-cultural plant values. Agroforestry Systems, 2012, 86, 1-16.	2.0	23
22	Elevation, Topography, and Edge Effects Drive Functional Composition of Woody Plant Species in Tropical Montane Forests. Biotropica, 2015, 47, 449-458.	1.6	23
23	The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834.	3.6	23
24	Age–size–habitat relationships for Polylepis australis: dealing with endangered forest ecosystems. Biodiversity and Conservation, 2008, 17, 2617-2625.	2.6	22
25	Rangeâ€wide genetic structure and diversity of the endemic tree line species <i>Polylepis australis</i> (Rosaceae) in Argentina. American Journal of Botany, 2011, 98, 1825-1833.	1.7	19
26	Adaptive and nonâ€adaptive evolution of trait means and genetic trait correlations for herbivory resistance and performance in an invasive plant. Oikos, 2017, 126, 572-582.	2.7	19
27	Biparental inbreeding depression, genetic relatedness and progeny vigour in a wind-pollinated treeline species in Argentina. Plant Ecology, 2009, 205, 155-164.	1.6	17
28	Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests. Diversity, 2013, 5, 1-14.	1.7	17
29	Abundance and diversity of flower visitors on wild and cultivated cacao (Theobroma cacao L.) in Bolivia. Agroforestry Systems, 2018, 92, 117-125.	2.0	17
30	Effects of temperature, salinity and cold stratification on seed germination in halophytes. Nordic Journal of Botany, 2012, 30, 627-634.	0.5	15
31	Elevational differentiation in metabolic cold stress responses of an endemic mountain tree. Environmental and Experimental Botany, 2020, 171, 103918.	4.2	14
32	Deforested habitats lack seeds of lateâ€successional and largeâ€seeded plant species in tropical montane forests. Applied Vegetation Science, 2015, 18, 603-612.	1.9	13
33	Mechanisms driving diversity–productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia, 2016, 180, 1025-1036.	2.0	13
34	Effects of disturbance and altitude on soil seed banks of tropical montane forests. Journal of Tropical Ecology, 2013, 29, 523-529.	1.1	12
35	Intra- and interspecific hybridization in invasive Siberian elm. Biological Invasions, 2017, 19, 1889-1904.	2.4	12
36	Shrub management is the principal driver of differing population sizes between native and invasive populations of Rosa rubiginosa L Biological Invasions, 2012, 14, 2141-2157.	2.4	11

#	Article	IF	Citations
37	Stronger effect of gastropods than rodents on seedling establishment, irrespective of exotic or native plant species origin. Oikos, 2016, 125, 1467-1477.	2.7	11
38	Range expansion during the Pleistocene drove morphological radiation of the fir genus (<i>Abies</i> , Pinaceae) in the Qinghai-Tibet Plateau and Himalayas. Botanical Journal of the Linnean Society, 2015, 179, 444-453.	1.6	10
39	Local adaptation to different phytogeographic regions: habitatâ€related variations in seed germination in response to temperature and salinity for two medicinal <scp><i>S</i></scp> <i>alvia</i> >species from <scp>J</scp> ordan. Plant Species Biology, 2017, 32, 25-35.	1.0	10
40	Species-specific responses to environmental stress on germination and juvenile growth of two Bolivian Andean agroforestry species. New Forests, 2014, 45, 777-795.	1.7	9
41	Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species. American Journal of Botany, 2015, 102, 1676-1684.	1.7	9
42	Non-native populations of an invasive tree outperform their native conspecifics. AoB PLANTS, 2016, 8, .	2.3	9
43	The influence of forest fragmentation on clonal diversity and genetic structure in <i>Heliconia angusta</i> , an endemic understorey herb of the Brazilian Atlantic rain forest. Journal of Tropical Ecology, 2014, 30, 199-208.	1.1	8
44	Tracking population genetic signatures of local extinction with herbarium specimens. Annals of Botany, 2022, 129, 857-868.	2.9	8
45	Clonal Diversity and Fineâ€scale Genetic Structure in a High Andean Treeline Population. Biotropica, 2015, 47, 59-65.	1.6	7
46	No effect of elevation and fragmentation on genetic diversity and structure in <i>Polylepis australis</i> trees from central Argentina. Austral Ecology, 2017, 42, 288-296.	1.5	7
47	Pollination ecology of <i>Justicia rusbyi</i> (Acanthaceae), a common understory plant in a tropical mountain forest in eastern Bolivia. Plant Species Biology, 2007, 22, 211-216.	1.0	6
48	Genetic structure of coastal and inland populations of Spergularia media (L.) C. Presl (Caryophyllaceae) in Central Europe. Conservation Genetics, 2010, 11, 2169-2177.	1.5	6
49	A Comparative Study of Germination Biology and Plant Performance in Two Dry Grassland Species. Folia Geobotanica, 2011, 46, 35-48.	0.9	6
50	Interactions count: plant origin, herbivory and disturbance jointly explain seedling recruitment and community structure. Scientific Reports, 2017, 7, 8288.	3.3	5
51	Are populations of Polylepis australis locally adapted along their elevation gradient?. Neotropical Biodiversity, 2021, 7, 246-256.	0.5	5
52	Effects of altitude, land use and microsites on early life performance of a high mountain tree: Insights from an in situ sowing experiment. Diversity and Distributions, 2019, 25, 1537-1550.	4.1	4
53	PROGENY PERFORMANCE AND PATHOGEN ATTACK RELATIVE TO ELEVATION IN A NEOTROPICAL TREE. Cerne, 2019, 25, 1-7.	0.9	4
54	The reproductive biology of two understory plants in the Atlantic rain forest, Brazil. Ecological Research, 2013, 28, 593-602.	1.5	3

#	Article	IF	CITATIONS
55	Negative Effects of Conspecific Floral Density on Fruit Set of Two Neotropical Understory Plants. Biotropica, 2013, 45, 325-332.	1.6	2
56	Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biological Invasions, 2019, 21, 333-347.	2.4	2
57	Invertebrate herbivory rather than competition with tussocks will increasingly delay highland forest regeneration in degraded areas under active restoration. Forest Ecology and Management, 2022, 506, 119990.	3.2	1