
Alexander F Palazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7037174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Darwinian Molecular Biology. Frontiers in Genetics, 2022, 13, 831068.	1.1	4
2	ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5′ splice site motifs within nuclear speckles. Rna, 2022, 28, 878-894.	1.6	5
3	Roles of Nucleoporin RanBP2/Nup358 in Acute Necrotizing Encephalopathy Type 1 (ANE1) and Viral Infection. International Journal of Molecular Sciences, 2022, 23, 3548.	1.8	16
4	Workshop on RanBP2/Nup358 and acute necrotizing encephalopathy. Nucleus, 2022, 13, 156-171.	0.6	9
5	Architecture of the cytoplasmic face of the nuclear pore. Science, 2022, 376, .	6.0	65
6	Not functional yet a difference maker: junk DNA as a case study. Biology and Philosophy, 2022, 37, .	0.7	2
7	GCâ€content biases in proteinâ€coding genes act as an "mRNA identity―feature for nuclear export. BioEssays, 2021, 43, e2000197.	1.2	6
8	RanBP2/Nup358 enhances miRNA activity by sumoylating Argonautes. PLoS Genetics, 2021, 17, e1009378.	1.5	18
9	A proximity-dependent biotinylation map of a human cell. Nature, 2021, 595, 120-124.	13.7	263
10	Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. Journal of Biological Chemistry, 2021, 297, 100856.	1.6	30
11	TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Research, 2020, 48, 11645-11663.	6.5	34
12	Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell, 2020, 183, 1151-1161.	13.5	153
13	MKRN2 Physically Interacts with GLE1 to Regulate mRNA Export and Zebrafish Retinal Development. Cell Reports, 2020, 31, 107693.	2.9	11
14	Getting clear about the F-word in genomics. PLoS Genetics, 2020, 16, e1008702.	1.5	22
15	Visualization of Endoplasmic Reticulum-Associated mRNA in Mammalian Cells. Methods in Molecular Biology, 2020, 2166, 35-49.	0.4	2
16	A tyrosine sulfation–dependent HLA-I modification identifies memory B cells and plasma cells. Science Advances, 2018, 4, eaar7653.	4.7	13
17	Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and IncRNAs. Frontiers in Genetics, 2018, 9, 440.	1.1	78
18	<scp>mRNA</scp> localization as a rheostat to regulate subcellular gene expression. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1416.	3.2	21

Alexander F Palazzo

#	Article	IF	CITATIONS
19	Assessing mRNA nuclear export in mammalian cells by microinjection. Methods, 2017, 126, 76-85.	1.9	5
20	A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and <i>N</i> ¹ -methyladenosine modification. Rna, 2017, 23, 270-283.	1.6	16
21	Single-Molecule Quantification of Translation-Dependent Association of mRNAs with the Endoplasmic Reticulum. Cell Reports, 2017, 21, 3740-3753.	2.9	80
22	Single particle imaging of mRNAs crossing the nuclear pore: Surfing on the edge. BioEssays, 2016, 38, 744-750.	1.2	9
23	Splicing promotes the nuclear export of <i>$\hat{1}^2$-globin</i> mRNA by overcoming nuclear retention elements. Rna, 2015, 21, 1908-1920.	1.6	27
24	Non-coding RNA: what is functional and what is junk?. Frontiers in Genetics, 2015, 6, 2.	1.1	602
25	mRNA encoding Sec61β, a tail-anchored protein, is localized on the endoplasmic reticulum. Journal of Cell Science, 2015, 128, 3398-410.	1.2	14
26	The Consensus 5' Splice Site Motif Inhibits mRNA Nuclear Export. PLoS ONE, 2015, 10, e0122743.	1.1	36
27	Sumoylation is Required for the Cytoplasmic Accumulation of a Subset of mRNAs. Genes, 2014, 5, 982-1000.	1.0	14
28	The Case for Junk DNA. PLoS Genetics, 2014, 10, e1004351.	1.5	202
29	Localization of <scp>mRNAs</scp> to the endoplasmic reticulum. Wiley Interdisciplinary Reviews RNA, 2014, 5, 481-492.	3.2	58
30	<scp>ALREX</scp> â€elements and introns: two identity elements that promote <scp>mRNA</scp> nuclear export. Wiley Interdisciplinary Reviews RNA, 2013, 4, 523-533.	3.2	21
31	RanBP2/Nup358 Potentiates the Translation of a Subset of mRNAs Encoding Secretory Proteins. PLoS Biology, 2013, 11, e1001545.	2.6	61
32	Identification of a Region within the Placental Alkaline Phosphatase mRNA That Mediates p180-dependent Targeting to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2013, 288, 29633-29641.	1.6	21
33	Trafficking of mRNAs containing ALREX-promoting elements through nuclear speckles. Nucleus, 2013, 4, 326-340.	0.6	43
34	p180 Promotes the Ribosome-Independent Localization of a Subset of mRNA to the Endoplasmic Reticulum. PLoS Biology, 2012, 10, e1001336.	2.6	111
35			
55	Positional requirements for the stimulation of mRNA nuclear export by ALREX-promoting elements. Molecular BioSystems, 2012, 8, 2527.	2.9	5

Alexander F Palazzo

#	Article	IF	CITATIONS
37	Nuclear export as a key arbiter of "mRNA identity―in eukaryotes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 566-577.	0.9	38
38	Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes. PLoS Genetics, 2011, 7, e1001366.	1.5	73
39	Analysis of mRNA Nuclear Export Kinetics in Mammalian Cells by Microinjection. Journal of Visualized Experiments, 2010, , .	0.2	24
40	Mechanisms Determining the Morphology of the Peripheral ER. Cell, 2010, 143, 774-788.	13.5	460
41	The Signal Sequence Coding Region Promotes Nuclear Export of mRNA. PLoS Biology, 2007, 5, e322.	2.6	103
42	Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling. Science, 2004, 303, 836-839.	6.0	387
43	Tubulin acetylation and cell motility. Nature, 2003, 421, 230-230.	13.7	207
44	Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation. Cancer Research, 2003, 63, 6825-37.	0.4	110
45	Microtubule-Actin Cross-talk at Focal Adhesions. Science Signaling, 2002, 2002, pe31-pe31.	1.6	50
46	Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene, 2002, 21, 1800-1811.	2.6	59
47	CP248, a derivative of exisulind, causes growth inhibition, mitotic arrest, and abnormalities in microtubule polymerization in glioma cells. Molecular Cancer Therapeutics, 2002, 1, 393-404.	1.9	16
48	mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 2001, 3, 723-729.	4.6	519
49	Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology, 2001, 11, 1536-1541.	1.8	302
50	A retention mechanism for distribution of mitochondria during cell division in budding yeast. Current Biology, 1999, 9, 1111-S2.	1.8	77