
Lian Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036975/publications.pdf Version: 2024-02-01

Ι ΙΑΝΙ ΤΙΑΝΙ

#	Article	IF	CITATIONS
1	Inhibiting pyruvate kinase muscle isoform 2 regresses group 2 pulmonary hypertension induced by supraâ€eoronary aortic banding. Acta Physiologica, 2022, 234, e13764.	1.8	3
2	Macrophage–NLRP3 Activation Promotes Right Ventricle Failure in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 608-624.	2.5	37
3	PINK1â€induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung cancer and pulmonary arterial hypertension. FASEB Journal, 2021, 35, e21771.	0.2	25
4	Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radical Biology and Medicine, 2021, 170, 150-178.	1.3	32
5	Abstract 12932: An Epigenetic Upregulation of Dynamin 2, a Regulator of Mitochondrial Fission, Promotes Human and Experimental Pulmonary Arterial Hypertension. Circulation, 2021, 144, .	1.6	1
6	Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2020, 21, 7278.	1.8	17
7	Novel Mutations and Decreased Expression of the Epigenetic Regulator <i>TET2</i> in Pulmonary Arterial Hypertension. Circulation, 2020, 141, 1986-2000.	1.6	75
8	Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circulation Research, 2020, 126, 1723-1745.	2.0	83
9	Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygenâ€ S ensing, Metabolism, and Dynamics. , 2020, 10, 713-765.		39
10	Supraâ€coronary aortic banding improves right ventricular function in experimental pulmonary arterial hypertension in rats by increasing systolic right coronary artery perfusion. Acta Physiologica, 2020, 229, e13483.	1.8	12
11	Increased Drp1-Mediated Mitochondrial Fission Promotes Proliferation and Collagen Production by Right Ventricular Fibroblasts in Experimental Pulmonary Arterial Hypertension. Frontiers in Physiology, 2018, 9, 828.	1.3	59
12	Biventricular Increases in Mitochondrial Fission Mediator (MiD51) and Proglycolytic Pyruvate Kinase (PKM2) Isoform in Experimental Group 2 Pulmonary Hypertension-Novel Mitochondrial Abnormalities. Frontiers in Cardiovascular Medicine, 2018, 5, 195.	1.1	22
13	Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. Journal of Molecular Medicine, 2017, 95, 381-393.	1.7	90
14	Colchicine Depolymerizes Microtubules, Increases Junctophilinâ€2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	1.6	49
15	MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 515-529.	2.5	134
16	Validation of an arterial constitutive model accounting for collagen content and crosslinking. Acta Biomaterialia, 2016, 31, 276-287.	4.1	22
17	Cone fission: an asymptomatic <i>STAT2</i> mutation elongates mitochondria and causes human disease following viral infection. Brain, 2015, 138, 2802-2806.	3.7	7
18	Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function. Journal of Biomechanics, 2015, 48, 405-412.	0.9	30

Lian Tian

#	Article	IF	CITATIONS
19	Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 107-113.	1.5	12
20	Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 2015, 31, 391-406.	0.8	140
21	17β-Estradiol Attenuates Conduit Pulmonary Artery Mechanical Property Changes With Pulmonary Arterial Hypertension. Hypertension, 2015, 66, 1082-1088.	1.3	22
22	Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H273-H283.	1.5	68
23	Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic modulus in the canine model of acute pulmonary embolization. Journal of Biomechanics, 2014, 47, 2904-2910.	0.9	26
24	Comparison of Approaches to Quantify Arterial Damping Capacity From Pressurization Tests on Mouse Conduit Arteries. Journal of Biomechanical Engineering, 2013, 135, 54504.	0.6	5
25	In Vivo and in Vitro Measurements of Pulmonary Arterial Stiffness: A Brief Review. Pulmonary Circulation, 2012, 2, 505-517.	0.8	31
26	Collagen Accumulation Does Not Impair Cardiopulmonary Recovery From Hypoxia, As Assessed Via Admittance Derived Pressure-Volume Loops In Mice. , 2012, , .		0
27	Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures. Annals of Biomedical Engineering, 2012, 40, 1419-1433.	1.3	20
28	Sex Differences in Right Ventricular-Vascular Coupling and Pulmonary Artery Impedance in Response to Chronic Hypoxia and Recovery. , 2012, , .		0
29	Quantitative Measures Of Collagen And Elastin Microstructure In Health And Pulmonary Hypertension. , 2011, , .		0
30	Artery Opening Angle Links Histological And Mechanical Aspects Of The Proximal Pulmonary Arteries Of Healthy And Pulmonary Hypertensive Rats And Calves. , 2011, , .		0
31	A Microstructurally Driven Model for Pulmonary Artery Tissue. Journal of Biomechanical Engineering, 2011, 133, 051002.	0.6	32
32	Linked opening angle and histological and mechanical aspects of the proximal pulmonary arteries of healthy and pulmonary hypertensive rats and calves. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1810-H1818.	1.5	14
33	Conduit Arteries In The Rat And Calf Express Different Material Property Changes In Response To Hypoxia-Induced Pulmonary Hypertension. , 2010, , .		1
34	Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients. Physiological Measurement, 2010, 31, 729-748.	1.2	6
35	Employing Biaxial Test Data Of pulmonary Arterial Tissues For Pressure-diameter Models. , 2010, , .		0
36	Quantification of Elastin Residual Stretch in Fresh Artery Tissue: Impact on Artery Material Properties and Pulmonary Hypertension Pathophysiology. , 2009, , .		0

Lian Tian

#	Article	IF	CITATIONS
37	Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Computational Materials Science, 2007, 41, 44-53.	1.4	65
38	Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 2007, 44, 7988-8005.	1.3	165