Lingyun Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036774/publications.pdf

Version: 2024-02-01

		623734	526287
54	832	14	27
papers	citations	h-index	g-index
54	54	54	1318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces B: Biointerfaces, 2013, 110, 22-28.	5.0	210
2	Coating process and stability of metal-polyphenol film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 197-205.	4.7	62
3	Galloyl groups-regulated fibrinogen conformation: Understanding antiplatelet adhesion on tannic acid coating. Acta Biomaterialia, 2017, 64, 187-199.	8.3	43
4	HP- \hat{l}^2 -cyclodextrin as an inhibitor of amyloid- \hat{l}^2 aggregation and toxicity. Physical Chemistry Chemical Physics, 2016, 18, 20476-20485.	2.8	41
5	A Novel Platelet-Repellent Polyphenolic Surface and Its Micropattern for Platelet Adhesion Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26570-26577.	8.0	37
6	A Chemical Method for Specific Capture of Circulating Tumor Cells Using Label-Free Polyphenol-Functionalized Films. Chemistry of Materials, 2018, 30, 4372-4382.	6.7	35
7	Metal Ion-Chelated Tannic Acid Coating for Hemostatic Dressing. Materials, 2019, 12, 1803.	2.9	34
8	A Novel Nanobody–Photosensitizer Conjugate for Hypoxia Resistant Photoimmunotherapy. Advanced Functional Materials, 2021, 31, 2103629.	14.9	21
9	Nanobody-Based high-performance immunosorbent for selective beta 2-microglobulin purification from blood. Acta Biomaterialia, 2020, 107, 232-241.	8.3	20
10	In Silico understanding of the cyclodextrin–phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes. Journal of Hazardous Materials, 2015, 285, 148-156.	12.4	18
11	HSA targets multiple ${\rm Al}^2$ 42 species and inhibits the seeding-mediated aggregation and cytotoxicity of ${\rm Al}^2$ 42 aggregates. RSC Advances, 2016, 6, 71165-71175.	3.6	18
12	Application of cyclodextrin-based eluents in hydrophobic charge-induction chromatography: Elution of antibody at neutral pH. Journal of Chromatography A, 2014, 1352, 62-68.	3.7	16
13	High Expression Achievement of Active and Robust Anti-Î ² 2 microglobulin Nanobodies via E.coli Hosts Selection. Molecules, 2019, 24, 2860.	3.8	16
14	Natural Fish Trap‣ike Nanocage for Labelâ€Free Capture of Circulating Tumor Cells. Advanced Science, 2020, 7, 2002259.	11.2	16
15	Removal of indoxyl sulfate by water-soluble poly-cyclodextrins in dialysis. Colloids and Surfaces B: Biointerfaces, 2018, 164, 406-413.	5.0	15
16	Facile Oriented Immobilization of Histidine-Tagged Proteins on Nonfouling Cobalt Polyphenolic Self-Assembly Surfaces. ACS Biomaterials Science and Engineering, 2017, 3, 3328-3337.	5.2	14
17	Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis. Carbohydrate Polymers, 2020, 247, 116665.	10.2	14
18	Direct site-specific immobilization of protein A via aldehyde-hydrazide conjugation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008, 132-138.	2.3	13

#	Article	IF	Citations
19	Optimization of dilution refolding conditions for a camelid single domain antibody against human beta-2-microglobulin. Protein Expression and Purification, 2016, 117, 59-66.	1.3	13
20	Salt-independent hydrophobic displacement chromatography for antibody purification using cyclodextrin as supermolecular displacer. Journal of Chromatography A, 2014, 1369, 98-104.	3.7	12
21	Identification of a New Function of Cardiovascular Disease Drug 3-Morpholinosydnonimine Hydrochloride as an Amyloid- \hat{l}^2 Aggregation Inhibitor. ACS Omega, 2017, 2, 243-250.	3.5	12
22	Freezing-assisted synthesis of covalent C–C linked bivalent and bispecific nanobodies. Organic and Biomolecular Chemistry, 2019, 17, 257-263.	2.8	11
23	Efficient continuous-flow aldehyde tag conversion using immobilized formylglycine generating enzyme. Catalysis Science and Technology, 2020, 10, 484-492.	4.1	11
24	A camelid nanobody against EGFR was easily obtained through refolding of inclusion body expressed in <i>Escherichia coli</i> . Biotechnology and Applied Biochemistry, 2017, 64, 895-901.	3.1	10
25	One-step Preparation of a VHH-based Immunoadsorbent for the Extracorporeal Removal of \hat{I}^2 2-microglobulin. Molecules, 2019, 24, 2119.	3.8	10
26	Oriented Immobilization and Quantitative Analysis Simultaneously Realized in Sandwich Immunoassay via His-Tagged Nanobody. Molecules, 2019, 24, 1890.	3.8	10
27	Amelioration of experimental autoimmune myasthenia gravis rats by blood purification treatment using 4â€mercaptoethylpyridineâ€based adsorbent. Journal of Biomedical Materials Research - Part A, 2011, 98A, 589-595.	4.0	9
28	Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking. Bioconjugate Chemistry, 2016, 27, 2266-2270.	3.6	9
29	Influence of Hydroxypropyl-β-cyclodextrin on the Extraction and Biodegradation of p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE in Soils. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	7
30	Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography. Journal of Chromatography A, 2020, 1624, 461227.	3.7	7
31	A facile method to oriented immobilization of His-tagged BirA on Co3+-NTA agarose beads. Enzyme and Microbial Technology, 2019, 120, 36-42.	3.2	6
32	Hemocompatible MOF-decorated pollen hemoperfusion absorbents for rapid and highly efficient removal of protein-bound uremic toxins. Materials Chemistry Frontiers, 2021, 5, 7617-7627.	5.9	6
33	Remediation of DDTsâ€Contaminated Sediments through Retrievable Activated Carbon Fiber Felt. Clean - Soil, Air, Water, 2014, 42, 973-978.	1.1	5
34	Curcumin induces structural change and reduces the growth of amyloid- \hat{l}^2 fibrils: a QCM-D study. RSC Advances, 2015, 5, 30197-30205.	3.6	5
35	Facile and Controllable Fabrication of Protein-Only Nanoparticles through Photo-Induced Crosslinking of Albumin and Their Application as DOX Carriers. Nanomaterials, 2019, 9, 797.	4.1	5
36	Modular Chamber Assembled with Cell-Replicated Surface for Capture of Cancer Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2647-2656.	5.2	5

#	Article	IF	CITATIONS
37	Nanobody-loaded immunosorbent for highly-specific removal of interleukin-17A from blood. Journal of Chromatography A, 2021, 1654, 462478.	3.7	5
38	Generation and Application of Fluorescent Anti-Human \hat{l}^2 2-Microglobulin VHHs via Amino Modification. Molecules, 2019, 24, 2600.	3.8	4
39	Coordination-driven reversible surfaces with site-specifically immobilized nanobody for dynamic cancer cell capture and release. Journal of Materials Chemistry B, 2020, 8, 7511-7520.	5 . 8	4
40	Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization. Journal of Chromatography A, 2016, 1476, 63-68.	3.7	3
41	Benzotriazole-5-carboxylic as a mixed-mode ligand for chromatographic separation of antibody with enhanced adsorption capacity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122652.	2.3	3
42	Fossil-like pollen grains for construction of UV-responsive photochromic and fluorogenic dual-functional film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126944.	4.7	3
43	Nanobodies as solubilization chaperones for the expression and purification of inclusion-body prone proteins. Chemical Communications, 2022, 58, 2898-2901.	4.1	3
44	Single and dual functionalization of proteins using site-specific nucleophilic carbon ligations. Chemical Communications, 2022, 58, 6316-6319.	4.1	3
45	Peptide Linker Affecting the Activity Retention Rate of VHH in Immunosorbents. Biomolecules, 2020, 10, 1610.	4.0	2
46	Tyrosine-Based Dual-Functional Interface for Trapping and On-Site Photo-Induced Covalent Immobilization of Proteins. Bioconjugate Chemistry, 2022, 33, 829-838.	3.6	2
47	An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions. Journal of Chromatography A, 2022, 1676, 463274.	3.7	2
48	Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. Methods in Molecular Biology, 2022, 2446, 3-17.	0.9	1
49	Facile calcium ion-regulated grafting of dense and highly stretched hyaluronan for selective mediation of cancer cells rolling under high-speed flow. Acta Biomaterialia, 2022, 146, 177-186.	8.3	1
50	An Adsorbent for Extracorporeal Elimination of Pathogenic Autoantibodies. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
51	Detection of $\hat{Al^2}$ -interacting proteins via a novel $\hat{Al^2}$ -adsorbents that use immobilized regular comb polymer. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 971, 94-98.	2.3	0
52	Adsorbents for the Treatment of Autoimmune Diseases through Hemoperfusion. Regenerative Medicine, Artificial Cells and Nanomedicine, 2017, , 629-647.	0.1	0
53	Increased clearance of indoxyl sulfate in renal failure rats with the addition of watersoluble polyâ€Î²â€cyclodextrin to the dialysate. Nephrology, 2021, , .	1.6	0
54	Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods in Molecular Biology, 2022, 2446, 357-371.	0.9	0