David S Ellsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13730-13734.	3.3	1,979
2	GENERALITY OF LEAF TRAIT RELATIONSHIPS: A TEST ACROSS SIX BIOMES. Ecology, 1999, 80, 1955-1969.	1.5	1,091
3	Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 2001, 411, 469-472.	13.7	957
4	Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 2011, 17, 2134-2144.	4.2	847
5	Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006, 440, 922-925.	13.7	780
6	Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 2002, 113, 185-222.	1.9	765
7	Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 1993, 96, 169-178.	0.9	685
8	Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell and Environment, 2002, 25, 1167-1179.	2.8	685
9	Tree and forest functioning in an enriched CO 2 atmosphere. New Phytologist, 1998, 139, 395-436.	3.5	672
10	Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?. New Phytologist, 2004, 162, 253-280.	3.5	624
11	Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia, 1991, 86, 16-24.	0.9	546
12	Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410, 809-810.	13.7	517
13	Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Functional Ecology, 1998, 12, 948-958.	1.7	479
14	Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia, 1998, 114, 471-482.	0.9	441
15	Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 1995, 104, 24-30.	0.9	409
16	Optimal stomatal behaviour around the world. Nature Climate Change, 2015, 5, 459-464.	8.1	397
17	Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36, 199.	1.1	348
18	Sensitivity of plants to changing atmospheric <scp>CO</scp> ₂ concentration: from the geological past to the next century. New Phytologist, 2013, 197, 1077-1094.	3.5	336

#	Article	IF	CITATIONS
19	A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology, 1999, 5, 293-309.	4.2	332
20	Forest water use and water use efficiency at elevated <scp><scp>CO₂</scp></scp> : a modelâ€data intercomparison at two contrasting temperate forest <scp>FACE</scp> sites. Global Change Biology, 2013, 19, 1759-1779.	4.2	314
21	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
22	Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology, 2004, 10, 2121-2138.	4.2	265
23	Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 2002, 113, 39-51.	1.9	260
24	Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 2015, 24, 706-717.	2.7	254
25	Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 2001, 150, 435-448.	3.5	240
26	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13, 980-989.	4.2	238
27	Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 1994, 97, 62-72.	0.9	236
28	Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10101-10106.	3.3	233
29	CO2enrichment in a maturing pine forest: are CO2exchange and water status in the canopy affected?. Plant, Cell and Environment, 1999, 22, 461-472.	2.8	225
30	The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.	13.7	218
31	Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 2004, 138, 259-274.	0.9	216
32	Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change, 2017, 7, 279-282.	8.1	198
33	Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 2003, 17, .	1.9	191
34	Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia, 1995, 104, 139-146.	0.9	182
35	Model–data synthesis for the next generation of forest freeâ€air <scp>CO</scp> ₂ enrichment (<scp>FACE</scp>) experiments. New Phytologist, 2016, 209, 17-28.	3.5	178
36	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.	3.5	171

#	Article	IF	CITATIONS
37	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	1.4	163
38	A test of the â€~oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured, lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.	3.5	159
39	Forest Litter Production, Chemistry, and Decomposition Following Two Years of Free-Air CO 2 Enrichment. Ecology, 2001, 82, 470.	1.5	144
40	Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiology, 2012, 32, 219-231.	1.4	143
41	Modelling assimilation and intercellular CO2 from measured conductance: a synthesis of approaches. Plant, Cell and Environment, 2000, 23, 1313-1328.	2.8	139
42	Global response patterns of plant photosynthesis to nitrogen addition: A metaâ€analysis. Global Change Biology, 2020, 26, 3585-3600.	4.2	139
43	Multiscale analysis of vegetation surface fluxes: from seconds to years. Advances in Water Resources, 2001, 24, 1119-1132.	1.7	136
44	Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 2003, 9, 1378-1400.	4.2	133
45	Elevated <scp><scp>CO</scp>₂</scp> affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10Âyears: a synthesis from <scp>D</scp> uke <scp>FACE</scp> . Global Change Biology, 2012, 18, 223-242.	4.2	133
46	Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated p CO2 (FACE). Plant, Cell and Environment, 2002, 25, 851-858.	2.8	132
47	Do thick leaves avoid thermal damage in critically low wind speeds?. New Phytologist, 2012, 194, 477-487.	3.5	132
48	Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 2001, 21, 1231-1244.	1.4	122
49	LEAF DEMOGRAPHY AND PHENOLOGY IN AMAZONIAN RAIN FOREST: A CENSUS OF 40 000 LEAVES OF 23 T SPECIES. Ecological Monographs, 2004, 74, 3-23.	REE 2.4	118
50	Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 2001, 150, 405-418.	3.5	112
51	Spatial Variability of Turbulent Fluxes in the Roughness Sublayer of an Even-Aged Pine Forest. Boundary-Layer Meteorology, 1999, 93, 1-28.	1.2	111
52	Photosynthesis of temperate <i><scp>E</scp>ucalyptus globulus</i> trees outside their native range has limited adjustment to elevated <scp><scp>CO₂</scp></scp> and climate warming. Global Change Biology, 2013, 19, 3790-3807.	4.2	111
53	Whole-tree chambers for elevated atmospheric CO2 experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment. Agricultural and Forest Meteorology, 2010, 150, 941-951.	1.9	108
54	Turbulent eddy motion at the forest-atmosphere interface. Journal of Geophysical Research, 1997, 102, 13409-13421.	3.3	107

#	Article	IF	CITATIONS
55	Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO ₂ . Global Change Biology, 2007, 13, 2479-2497.	4.2	107
56	Optimal stomatal conductance in relation to photosynthesis in climatically contrasting <i>Eucalyptus</i> species under drought. Plant, Cell and Environment, 2013, 36, 262-274.	2.8	104
57	The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agricultural and Forest Meteorology, 2014, 189-190, 2-10.	1.9	102
58	Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiology, 2000, 20, 435-445.	1.4	97
59	Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorology, 1996, 80, 249-282.	1.2	96
60	Light interception efficiency explained by two simple variables: a test using a diversity of small―to mediumâ€sized woody plants. New Phytologist, 2012, 193, 397-408.	3.5	96
61	Seasonal acclimation of leaf respiration in Eucalyptus saligna trees: impacts of elevated atmospheric CO2 and summer drought. Global Change Biology, 2011, 17, 1560-1576.	4.2	91
62	Modeling CO2and water vapor turbulent flux distributions within a forest canopy. Journal of Geophysical Research, 2000, 105, 26333-26351.	3.3	90
63	Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell and Environment, 2014, 37, 978-994.	2.8	90
64	A Lagrangian dispersion model for predicting CO2sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. Journal of Geophysical Research, 1997, 102, 9309-9321.	3.3	88
65	Does Free-Air Carbon Dioxide Enrichment Affect Photochemical Energy Use by Evergreen Trees in Different Seasons? A Chlorophyll Fluorescence Study of Mature Loblolly Pine1. Plant Physiology, 1999, 120, 1183-1192.	2.3	85
66	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
67	Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiology, 2009, 29, 1367-1380.	1.4	84
68	Canopy leaf area of a mature evergreen <i>Eucalyptus</i> woodland does not respond to elevated atmospheric [<scp>CO</scp> ₂] but tracks water availability. Global Change Biology, 2016, 22, 1666-1676.	4.2	83
69	Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?. New Phytologist, 2009, 183, 153-166.	3.5	82
70	Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell and Environment, 2015, 38, 1142-1156.	2.8	82
71	Base cation fertilization and liming effects on nutrition and growth of Vermont sugar maple stands. Forest Ecology and Management, 1996, 84, 123-134.	1.4	81
72	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€Iimited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	4.2	77

#	Article	IF	CITATIONS
73	Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest. Plant, Cell and Environment, 2002, 25, 1095-1120.	2.8	76
74	Effects of elevated atmospheric [<scp>CO₂</scp>] on instantaneous transpiration efficiency at leaf and canopy scales in <scp><i>E</i></scp> <i>ucalyptus saligna</i> . Global Change Biology, 2012, 18, 585-595.	4.2	75
75	Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant and Soil, 2015, 391, 293-305.	1.8	75
76	Conserved stomatal behaviour under elevated CO ₂ and varying water availability in a mature woodland. Functional Ecology, 2016, 30, 700-709.	1.7	74
77	Forest fineâ€root production and nitrogen use under elevated CO ₂ : contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology, 2009, 15, 132-144.	4.2	72
78	Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology, 2008, 28, 607-614.	1.4	70
79	Interactive direct and plantâ€mediated effects of elevated atmospheric [<scp>CO</scp> ₂] and temperature on a eucalyptâ€feeding insect herbivore. Global Change Biology, 2013, 19, 1407-1416.	4.2	69
80	Relationships among crown condition, growth, and stand nutrition in seven northern Vermont sugarbushes. Canadian Journal of Forest Research, 1995, 25, 386-397.	0.8	68
81	Light inhibition of leaf respiration in fieldâ€grown <i>Eucalyptus saligna</i> in wholeâ€tree chambers under elevated atmospheric CO ₂ and summer drought. Plant, Cell and Environment, 2012, 35, 966-981.	2.8	68
82	Canopy position affects photosynthetic adjustments to long-term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest. Tree Physiology, 2004, 24, 961-970.	1.4	65
83	FOREST LITTER PRODUCTION, CHEMISTRY, AND DECOMPOSITION FOLLOWING TWO YEARS OF FREE-AIR CO2ENRICHMENT. Ecology, 2001, 82, 470-484.	1.5	62
84	Modelling Vegetation-Atmosphere Co2 Exchange By A Coupled Eulerian-Langrangian Approach. Boundary-Layer Meteorology, 2000, 95, 91-122.	1.2	60
85	Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Annals of Botany, 2017, 120, 123-133.	1.4	60
86	Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytologist, 2019, 222, 1223-1229.	3.5	58
87	Photosynthesis and canopy nutrition of four sugar maple forests on acid soils in northern Vermont. Canadian Journal of Forest Research, 1994, 24, 2118-2127.	0.8	57
88	Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna. Tree Physiology, 2011, 31, 922-931.	1.4	57
89	Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiology, 2008, 28, 1231-1243.	1.4	56
90	Shortâ€ŧerm carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric <scp>CO</scp> ₂ concentration. Global Change Biology, 2016, 22, 380-390.	4.2	55

#	Article	IF	CITATIONS
91	The role of plant species in biomass production and response to elevated CO2 and N. Ecology Letters, 2003, 6, 623-625.	3.0	53
92	Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 514-525.	0.8	51
93	Lower photorespiration in elevated CO ₂ reduces leaf N concentrations in mature <i>Eucalyptus </i> trees in the field. Global Change Biology, 2019, 25, 1282-1295.	4.2	51
94	Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biology, 2002, 8, 124-141.	4.2	49
95	Maintenance of leaf N controls the photosynthetic CO ₂ response of grassland species exposed to 9 years of freeâ€air CO ₂ enrichment. Global Change Biology, 2010, 16, 2076-2088.	4.2	49
96	A Simple Method for Simulating Drought Effects on Plants. Frontiers in Plant Science, 2019, 10, 1715.	1.7	49
97	A continentalâ€scale assessment of variability in leaf traits: Within species, across sites and between seasons. Functional Ecology, 2018, 32, 1492-1506.	1.7	48
98	Response of belowground communities to short-term phosphorus addition inÂa phosphorus-limited woodland. Plant and Soil, 2015, 391, 321-331.	1.8	47
99	Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiology, 2002, 22, 393-401.	1.4	46
100	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
101	Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Tree Physiology, 2011, 31, 932-944.	1.4	45
102	Upsetting the order: how climate and atmospheric change affects herbivore–enemy interactions. Current Opinion in Insect Science, 2014, 5, 66-74.	2.2	45
103	Modeling dynamic understory photosynthesis of contrasting species in ambient and elevated carbon dioxide. Oecologia, 2001, 126, 487-499.	0.9	43
104	Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytologist, 2012, 193, 409-419.	3.5	41
105	Elevated <scp>CO</scp> ₂ did not affect the hydrological balance of a mature native <i>Eucalyptus</i> woodland. Global Change Biology, 2018, 24, 3010-3024.	4.2	41
106	Nitrogen and Phosphorus Retranslocation of Leaves and Stemwood in a Mature Eucalyptus Forest Exposed to 5 Years of Elevated CO2. Frontiers in Plant Science, 2019, 10, 664.	1.7	40
107	Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length. Tree Physiology, 2002, 22, 747-761.	1.4	39
108	Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts?. Tree Physiology, 2013, 33, 793-806.	1.4	39

#	Article	IF	CITATIONS
109	Water availability affects seasonal <scp>CO</scp> ₂ â€induced photosynthetic enhancement in herbaceous species in a periodically dry woodland. Global Change Biology, 2017, 23, 5164-5178.	4.2	39
110	The validity of optimal leaf traits modelled on environmental conditions. New Phytologist, 2019, 221, 1409-1423.	3.5	38
111	Possible explanation of the disparity between the in vitro and in vivo measurements of Rubisco activity: a study in loblolly pine grown in elevated pCO2. Journal of Experimental Botany, 2001, 52, 1555-1561.	2.4	37
112	Low phosphorus supply constrains plant responses to elevated CO ₂ : A metaâ€analysis. Global Change Biology, 2020, 26, 5856-5873.	4.2	37
113	Growingâ€season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 2020, 26, 1833-1841.	4.2	36
114	Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 2014, 65, 6471-6485.	2.4	34
115	GROSS PRIMARY PRODUCTIVITY IN DUKE FOREST: MODELING SYNTHESIS OF CO2EXPERIMENT AND EDDY–FLUX DATA. , 2001, 11, 239-252.		33
116	Linking photosynthesis and leaf N allocation under future elevated CO2and climate warming inEucalyptus globulus. Journal of Experimental Botany, 2017, 68, erw484.	2.4	32
117	Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 2012, 18, 3476-3476.	4.2	31
118	Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment. Environmental Pollution, 2010, 158, 2023-2031.	3.7	29
119	Photosynthetic enhancement by elevated CO ₂ depends on seasonal temperatures for warmed and non-warmed <i>Eucalyptus globulus</i> trees. Tree Physiology, 2015, 35, tpv110.	1.4	27
120	Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species. Tree Physiology, 2015, 35, 266-278.	1.4	25
121	Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology, 2006, 26, 1589-1599.	1.4	24
122	Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition. Global Change Biology, 2007, 13, 132-146.	4.2	23
123	Belowground competition and the response of developing forest communities to atmospheric CO2and O3. Global Change Biology, 2007, 13, 2230-2238.	4.2	23
124	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	2.3	22
125	One Stomatal Model to Rule Them All? Toward Improved Representation of Carbon and Water Exchange in Global Models. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	20
126	Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia, 2013, 171, 1025-1035.	0.9	19

#	Article	IF	CITATIONS
127	Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. Biogeochemistry, 2018, 139, 85-101.	1.7	17
128	Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest. Biotropica, 2020, 52, 608-615.	0.8	17
129	Low sensitivity of gross primary production to elevated CO ₂ in a mature eucalypt woodland. Biogeosciences, 2020, 17, 265-279.	1.3	17
130	Canopy position affects photosynthesis and anatomy in mature <i>Eucalyptus</i> trees in elevated CO2. Tree Physiology, 2021, 41, 206-222.	1.4	16
131	Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves. Hydrology and Earth System Sciences, 2021, 25, 447-471.	1.9	15
132	Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old <i>Quercus robur</i> ?. Tree Physiology, 2022, 42, 130-144.	1.4	15
133	Elevated CO ₂ does not affect stem CO ₂ efflux nor stem respiration in a dry <i>Eucalyptus</i> woodland, but it shifts the vertical gradient in xylem [CO ₂]. Plant, Cell and Environment, 2019, 42, 2151-2164.	2.8	14
134	How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006005.	1.3	13
135	Leaf age and eCO2 both influence photosynthesis by increasing light harvesting in mature Eucalyptus tereticornis at EucFACE. Environmental and Experimental Botany, 2019, 167, 103857.	2.0	12
136	Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agricultural and Forest Entomology, 2017, 19, 101-112.	0.7	11
137	Forest Canopy Properties and Variation in Aboveground Net Primary Production over Upper Great Lakes Landscapes. Ecosystems, 2011, 14, 865-879.	1.6	9
138	Plant productivity is a key driver of soil respiration response to climate change in a nutrient-limited soil Basic and Applied Ecology, 2021, 50, 155-168.	1.2	8
139	Increasing aridity will not offset CO ₂ fertilization in fastâ€growing eucalypts with access to deep soil water. Global Change Biology, 2021, 27, 2970-2990.	4.2	8
140	Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, .	0.8	8
141	Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell and Environment, 2022, 45, 2744-2761.	2.8	8
142	Impacts of elevated carbon dioxide on carbon gains and losses from soil and associated microbes in a Eucalyptus woodland. Soil Biology and Biochemistry, 2020, 143, 107734.	4.2	6
143	The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a Iowâ€phosphorus Eucalyptus forest under elevated CO 2. Functional Ecology, 2021, 35, 2056-2071.	1.7	6
144	The quasi-equilibrium framework revisited: analyzing long-term CO ₂ enrichment responses in plant–soil models. Geoscientific Model Development, 2019, 12, 2069-2089.	1.3	5

#	Article	IF	CITATIONS
145	Gross Primary Productivity in Duke Forest: Modeling Synthesis of CO 2 Experiment and Eddy-Flux Data. , 2001, 11, 239.		3
146	Leaf to Landscape. Ecological Studies, 2004, , 133-168.	0.4	2
147	Leaf to Landscape. Ecological Studies, 2004, , 207-227.	0.4	2
148	Can lightâ€saturated photosynthesis in lowland tropical forests be estimated by one light level?. Biotropica, 2020, 52, 1183-1193.	0.8	2
149	Leaf inclination angle and foliage clumping in an evergreen broadleaf Eucalyptus forest under elevated atmospheric CO2. Australian Journal of Botany, 2021, , .	0.3	2
150	Inferring scalar sources and sinks within canopies using forward and inverse methods. Water Science and Application, 2001, , 31-45.	0.3	1
151	Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Clobal Change Biology, 2007, .	4.2	1
152	Foreword: Measuring impacts of climate change on plants. Functional Plant Biology, 2008, 35, iii.	1.1	0
153	Elevated CO2 alters the temperature sensitivity of stem CO2 efflux in a mature eucalypt woodland. Environmental and Experimental Botany, 2021, 188, 104508.	2.0	ο