
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7036553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors. Journal of the American Chemical Society, 2007, 129, 4520-4521.	13.7	243
2	Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy. ACS Nano, 2019, 13, 13304-13316.	14.6	238
3	Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO ₂ Adsorption and Catalytic Property for CO ₂ Cycloaddition with Epoxides. Inorganic Chemistry, 2017, 56, 2337-2344.	4.0	226
4	Two VersatileN,Nâ€~-Bipyridine-Type Ligands for Preparing Organicâ `'Inorganic Coordination Polymers:Â New Cobalt- and Nickel-Containing Framework Materials. Inorganic Chemistry, 2001, 40, 2825-2834.	4.0	220
5	Cu(<scp>i</scp>)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. Chemical Communications, 2014, 50, 1444-1446.	4.1	200
6	Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 6957-6983.	10.3	190
7	Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(II)â`Triazole Metalâ`Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion. Journal of the American Chemical Society, 2010, 132, 7005-7017.	13.7	185
8	Coordination-Driven Nanosized Lanthanide "Molecular Lantern―with Tunable Luminescent Properties. Journal of the American Chemical Society, 2007, 129, 4872-4873.	13.7	156
9	Ionic liquid-decorated COF and its covalent composite aerogel for selective CO ₂ adsorption and catalytic conversion. Journal of Materials Chemistry A, 2019, 7, 4689-4698.	10.3	152
10	Construction of Covalent Organic Frameworks via Three-Component One-Pot Strecker and Povarov Reactions. Journal of the American Chemical Society, 2020, 142, 6521-6526.	13.7	146
11	Pd NPs-Loaded Homochiral Covalent Organic Framework for Heterogeneous Asymmetric Catalysis. Chemistry of Materials, 2017, 29, 6518-6524.	6.7	141
12	Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry - A European Journal, 2020, 26, 5583-5591.	3.3	137
13	BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. IScience, 2019, 14, 180-198.	4.1	130
14	Syntheses and Characterizations of One-Dimensional Coordination Polymers Generated from Cadmium Nitrate and Bipyridine Ligands. Inorganic Chemistry, 1999, 38, 3056-3060.	4.0	126
15	Syntheses and Structures of Ag(I)-Containing Coordination Polymers and Co(II)-Containing Supramolecular Complex Based on Novel Fulvene Ligands. Inorganic Chemistry, 2004, 43, 4727-4739.	4.0	123
16	A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO ₃ for Synergistic Tumor Therapy. Angewandte Chemie - International Edition, 2020, 59, 18042-18047.	13.8	123
17	Photothermal conversion triggered thermal asymmetric catalysis within metal nanoparticles loaded homochiral covalent organic framework. Nature Communications, 2019, 10, 3368.	12.8	120
18	Nanoscale UiO-MOF-based luminescent sensors for highly selective detection of cysteine and glutathione and their application in bioimaging. Chemical Communications, 2015, 51, 17672-17675.	4.1	114

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Synthesis of Chiral Covalent Organic Frameworks from Prochiral Monomers for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2020, 142, 16915-16920.	13.7	109
20	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	38.1	109
21	Reactions of Cu(hfacac)2A·H2O (hfacac = Hexafluoroacetylacetonate) with Bidentate Ligands. Preparation, Characterization, and X-ray Structures of the Molecular Complexes Cu(hfacac)2(pyrazine)2and Cu(hfacac)2(3-cyanopyridine)2and the One-Dimensional Coordination Polymers Cu(hfacac)2(1,2-bis(4-pyridyl)ethane) and Cu(hfacac)2(4,4†-trimethylenebipyridine). Inorganic	4.0	107
22	Chemistry, 1999, 38, 502/-5033. Postâ€Synthetic Polymerization of UiOâ€66â€NH ₂ Nanoparticles and Polyurethane Oligomer toward Standâ€Alone Membranes for Dye Removal and Separation. Chemistry - A European Journal, 2016, 22, 10565-10571.	3.3	106
23	[Ag2(C33H26N2O2)(H2O)2(SO3CF3)2]·0.5C6H6: A Luminescent Supramolecular Silver(I) Complex Based on Metalâ^'Carbon and Metalâ^'Heteroatom Interactions. Inorganic Chemistry, 2002, 41, 4909-4914.	4.0	104
24	Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation–Condensation Reactions. Inorganic Chemistry, 2016, 55, 6685-6691.	4.0	103
25	Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm, 2012, 14, 7157.	2.6	100
26	Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2020, 2, 3656-3733.	4.6	100
27	Metal-Containing Ligands for Mixed-Metal Polymers:Â Novel Cu(II)â^'Ag(I) Mixed-Metal Coordination Polymers Generated from [Cu(2-methylpyrazine-5-carboxylate)2(H2O)]·3H2O and Silver(I) Salts. Inorganic Chemistry, 2000, 39, 1943-1949.	4.0	97
28	Synthesis and Characterization of New Coordination Polymers Generated from Oxadiazole-Containing Organic Ligands and Inorganic Silver(I) Salts. Inorganic Chemistry, 2003, 42, 294-300.	4.0	95
29	Self-Assembly of Coordination Polymers from AgX (X = SbF6-, PF6-, and CF3SO3-) and Oxadiazole-Containing Ligands. Inorganic Chemistry, 2003, 42, 5699-5706.	4.0	95
30	An in situ self-assembled Cu ₄ 1 ₄ –MOF-based mixed matrix membrane: a highly sensitive and selective naked-eye sensor for gaseous HCl. Chemical Communications, 2016, 52, 5238-5241.	4.1	92
31	Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorganic Chemistry, 2016, 55, 3058-3064.	4.0	91
32	Sulfonic Acid and Ionic Liquid Functionalized Covalent Organic Framework for Efficient Catalysis of the Biginelli Reaction. Journal of Organic Chemistry, 2021, 86, 3024-3032.	3.2	85
33	Silver(I) Coordination Polymers Based on A Nano-Sized Bent Bis(3-acetylenylphenyl-(4-cyanophenyl))oxadiazole Ligand:  The Role of Ligand Isomerism and the Templating Effect of Polyatomic Anions and Solvent Intermediates. Inorganic Chemistry, 2006, 45, 3325-3343.	4.0	84
34	A Ferroceneâ€Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. Small, 2021, 17, e2101368.	10.0	84
35	Synthesis and Characterization of New Coordination Polymers Generated from Bent Bis(Cyanophenyl)oxadiazole Ligands and Ag(I) Salts. Inorganic Chemistry, 2005, 44, 4679-4692.	4.0	83
36	Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid-Decorated UiO-66 Type NMOF and Its Application toward CO ₂ Separation and Conversion. ACS Applied Materials & Interfaces, 2017, 9, 38919-38930.	8.0	83

#	Article	IF	CITATIONS
37	Novel hydrogen-bonded two- and three-dimensional networks generated from the reaction of metal nitrate hydrates (Mâ€=â€Cd, Co) with the bidentate linear ligand 4,4′-bipyridine. Dalton Transactions RSC, 2000, , 775-780.	2.3	81
38	Reversible Adsorption and Separation of Aromatics on Cd ^{II} –Triazole Single Crystals. Chemistry - A European Journal, 2009, 15, 10364-10368.	3.3	80
39	Ru Nanoparticles-Loaded Covalent Organic Framework for Solvent-Free One-Pot Tandem Reactions in Air. Inorganic Chemistry, 2018, 57, 2678-2685.	4.0	77
40	Homochiral Covalent Organic Framework for Catalytic Asymmetric Synthesis of a Drug Intermediate. Journal of the American Chemical Society, 2020, 142, 12574-12578.	13.7	77
41	New Ag(I)-Containing Coordination Polymers Generated from Multidentate Schiff-Base Ligands. Inorganic Chemistry, 2004, 43, 5603-5612.	4.0	76
42	Smart pH-Responsive Polymer-Tethered and Pd NP-Loaded NMOF as the Pickering Interfacial Catalyst for One-Pot Cascade Biphasic Reaction. ACS Applied Materials & Interfaces, 2017, 9, 36438-36446.	8.0	76
43	Surface Decorated Porphyrinic Nanoscale Metal–Organic Framework for Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 5420-5428.	4.0	73
44	Encapsulation of Ln3+ hydrate species for tunable luminescent materials based on a porous Cd(ii)-MOF. Journal of Materials Chemistry, 2012, 22, 9027.	6.7	72
45	Copper(I) Metal–Organic Framework: Visual Sensor for Detecting Small Polar Aliphatic Volatile Organic Compounds. Inorganic Chemistry, 2015, 54, 11590-11592.	4.0	71
46	Fabrication of Cd(<scp>ii</scp>)-MOF-based ternary photocatalytic composite materials for H ₂ production via a gel-to-crystal approach. Chemical Communications, 2015, 51, 15906-15909.	4.1	71
47	Photodynamic Therapy Based on Nanoscale Metal–Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chemistry - an Asian Journal, 2018, 13, 3122-3149.	3.3	71
48	[Cu(C24H22N4O3)]·CH2Cl2: A Discrete Breathing Metallamacrocycle Showing Selective and Reversible Guest Adsorption with Retention of Single Crystallinity. Journal of the American Chemical Society, 2007, 129, 1514-1515.	13.7	70
49	Pd NP-Loaded and Covalently Cross-Linked COF Membrane Microreactor for Aqueous CBs Dechlorination at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 20448-20457.	8.0	70
50	Pd@COF-QA: a phase transfer composite catalyst for aqueous Suzuki–Miyaura coupling reaction. Green Chemistry, 2020, 22, 1150-1155.	9.0	69
51	Dual Heterogeneous Catalyst Pd–Au@Mn(II)-MOF for One-Pot Tandem Synthesis of Imines from Alcohols and Amines. Inorganic Chemistry, 2017, 56, 654-660.	4.0	65
52	Pd loaded and covalent-organic framework involved chitosan aerogels and their application forÂcontinuous flow-through aqueous CB decontamination. Journal of Materials Chemistry A, 2018, 6, 11140-11146.	10.3	64
53	Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 2015, 54, 10865-10872.	4.0	63
54	Diiodo-Bodipy-Encapsulated Nanoscale Metal–Organic Framework for pH-Driven Selective and Mitochondria Targeted Photodynamic Therapy, Inorganic Chemistry, 2018, 57, 10137-10145	4.0	62

#	Article	IF	CITATIONS
55	Synergistic Antibacterial and Antiâ€Inflammatory Effects of a Drugâ€Loaded Selfâ€Standing Porphyrinâ€COF Membrane for Efficient Skin Wound Healing. Advanced Healthcare Materials, 2021, 10, e2001821.	7.6	59
56	Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations. Chemical Communications, 2016, 52, 6517-6520.	4.1	57
57	Construction of Metalâ^'Organic Frameworks (M = Cd(II), Co(II), Zn(II), and Cu(II)) Based on Semirigid Oxadiazole Bridging Ligands by Solution and Hydrothermal Reactions. Crystal Growth and Design, 2007, 7, 1058-1068.	3.0	55
58	A drug-loaded nanoscale metal–organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chemical Communications, 2016, 52, 14113-14116.	4.1	54
59	Pd(II)-NHDC-Functionalized UiO-67 Type MOF for Catalyzing Heck Cross-Coupling and Intermolecular Benzyne–Benzyne–Alkene Insertion Reactions. Inorganic Chemistry, 2018, 57, 4379-4386.	4.0	53
60	Synthesis and characterization of new coordination polymers generated from oxadiazole-containing ligand and inorganic M(ii) [M = Cu(ii), Co(ii)] salts. Dalton Transactions, 2003, , 1472-1479.	3.3	52
61	Organometallic Silver(I) Supramolecular Complexes Generated from Multidentate Furan-Containing Symmetric and Unsymmetric Fulvene Ligands and Silver(I) Salts. Inorganic Chemistry, 2005, 44, 1693-1703.	4.0	50
62	A porous Cd(<scp>ii</scp>)-MOF-coated quartz fiber for solid-phase microextraction of BTEX. Journal of Materials Chemistry A, 2014, 2, 13868-13872.	10.3	49
63	UiO-68-ol NMOF-Based Fluorescent Sensor for Selective Detection of HClO and Its Application in Bioimaging. Inorganic Chemistry, 2017, 56, 13241-13248.	4.0	48
64	Homochiral Covalent Organic Frameworks for Asymmetric Catalysis. Chemistry - A European Journal, 2020, 26, 13754-13770.	3.3	48
65	Ag(I) and Cu(II) Discrete and Polymeric Complexes Based on Single- and Double-Armed Oxadiazole-Bridging Organic Clips. Inorganic Chemistry, 2006, 45, 10613-10628.	4.0	47
66	Novel organic–inorganic composite coordination polymers generated from new multidentate schiff-base ligand and Ag(i) salts. Chemical Communications, 2004, , 220-221.	4.1	46
67	Reversible adsorption and complete separation of volatile chlorocarbons based on a Cd(ii)-triazole MOF in a single-crystal-to-single-crystal fashion. Chemical Communications, 2011, 47, 12343.	4.1	46
68	Micro-Cu ₄ I ₄ -MOF: reversible iodine adsorption and catalytic properties for tandem reaction of Friedel–Crafts alkylation of indoles with acetals. Chemical Communications, 2016, 52, 12702-12705.	4.1	46
69	Visible-light triggered selective reduction of nitroarenes to azo compounds catalysed by Ag@organic molecular cages. Chemical Communications, 2019, 55, 3586-3589.	4.1	46
70	Synthesis of Metal-Free Chiral Covalent Organic Framework for Visible-Light-Mediated Enantioselective Photooxidation in Water. Journal of the American Chemical Society, 2022, 144, 6681-6686.	13.7	46
71	A MOF-membrane based on the covalent bonding driven assembly of a NMOF with an organic oligomer and its application in membrane reactors. Chemical Communications, 2016, 52, 13564-13567.	4.1	45
72	Cu(<scp>ii</scp>)/Cu(0)@UiO-66-NH ₂ : base metal@MOFs as heterogeneous catalysts for olefin oxidation and reduction. Chemical Communications, 2016, 52, 13116-13119.	4.1	44

#	Article	IF	CITATIONS
73	Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO ₂ Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorganic Chemistry, 2021, 60, 12591-12601.	4.0	43
74	A self-assembled Pd6L8 nanoball for Suzuki–Miyaura coupling reactions in both homogeneous and heterogeneous formats. Green Chemistry, 2013, 15, 3150.	9.0	42
75	A Ni(<scp>ii</scp>)-MOF: reversible guest adsorption and heterogeneous catalytic properties for silylcyanation of aromatic aldehydes. Chemical Communications, 2015, 51, 839-842.	4.1	41
76	Organometallic Coordination Polymers Generated from Bent Bis(acetylenylphenyl)oxadiazole Ligands and Ag(I) Salts. Inorganic Chemistry, 2005, 44, 6591-6608.	4.0	40
77	A carbon nanomaterial derived from a nanoscale covalent organic framework for photothermal therapy in the NIR-II biowindow. Chemical Communications, 2020, 56, 7793-7796.	4.1	40
78	Self-Assembly of {Ag2N4}-Core-Containing Coordination Polymers from AgX (X = NO3-, ClO4-, and PF6-) and Oxadiazole-Bridged 4,4â€~- and 3,3â€~- Biphenylamine Ligands. Crystal Growth and Design, 2005, 5, 585-591.	3.0	38
79	Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications, 2021, 57, 4464-4467.	4.1	36
80	Cul@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorganic Chemistry, 2017, 56, 8341-8347.	4.0	35
81	Core–Shell-Structured Covalent–Organic Framework as a Nanoagent for Single-Laser-Induced Phototherapy. ACS Applied Materials & Interfaces, 2021, 13, 17243-17254.	8.0	34
82	A nanoscale metal–organic framework for combined photodynamic and starvation therapy in treating breast tumors. Chemical Communications, 2019, 55, 14898-14901.	4.1	33
83	One-Pot Synthetic Approach toward Porphyrinatozinc and Heavy-Atom Involved Zr-NMOF and Its Application in Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 3169-3176.	4.0	32
84	A benzothiadiazole-based covalent organic framework for highly efficient visible-light driven hydrogen evolution. Chemical Communications, 2020, 56, 12612-12615.	4.1	32
85	Co-crystallization of oxadiazole-bridged pyridyl-N-oxide building modules with R-aromatics (R = –OH,) Tj ETQq1	1 0.7843 2.6	814.rgBT /Ov
86	APPT-Cd MOF: Acetylene Adsorption Mechanism and Its Highly Efficient Acetylene/Ethylene Separation at Room Temperature. Chemistry of Materials, 2018, 30, 7433-7437.	6.7	30
87	A thermo-responsive polymer-tethered and Pd NP loaded UiO-66 NMOF for biphasic CB dechlorination. Green Chemistry, 2019, 21, 1625-1634.	9.0	30
88	Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorganic Chemistry, 2019, 58, 9253-9259.	4.0	29
89	UiO-68-PT MOF-Based Sensor and Its Mixed Matrix Membrane for Detection of HClO in Water. Inorganic Chemistry, 2019, 58, 9890-9896.	4.0	29
90	Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8, 848-879.	6.0	28

#	Article	IF	CITATIONS
91	Cu(II)-Metal–Organic Framework with Open Coordination Metal Sites for Low Temperature Thermochemical Water Oxidation. Chemistry of Materials, 2015, 27, 3805-3808.	6.7	27
92	TiO ₂ @UiO-68-CIL: A Metal–Organic-Framework-Based Bifunctional Composite Catalyst for a One-Pot Sequential Asymmetric Morita–Baylis–Hillman Reaction. Inorganic Chemistry, 2019, 58, 4722-4730.	4.0	27
93	Synthesis and Catalytic Properties of Metal– <i>N</i> -Heterocyclic-Carbene-Decorated Covalent Organic Framework. Organic Letters, 2020, 22, 7363-7368.	4.6	27
94	A N-heterocyclic tetracarbene Pd(ii) moiety containing a Pd(ii)–Pb(ii) bimetallic MOF for three-component cyclotrimerization via benzyne. Chemical Communications, 2016, 52, 10505-10508.	4.1	26
95	Synthesis of an MOF-based Hg ²⁺ -fluorescent probe <i>via</i> stepwise post-synthetic modification in a single-crystal-to-single-crystal fashion and its application in bioimaging. Dalton Transactions, 2019, 48, 16502-16508.	3.3	26
96	Cu(ii)4L4coordination-driven molecular container: a reusable visual colorimetric sensor for Ag(i) ions. Chemical Communications, 2014, 50, 4721-4724.	4.1	25
97	Fe ₃ O ₄ /Porphyrin Covalent Organic Framework Core–Shell Nanospheres as Interfacial Catalysts for Enzymatic Esterification. ACS Applied Nano Materials, 2020, 3, 10360-10368.	5.0	25
98	Covalent organic framework based multifunctional self-sanitizing face masks. Journal of Materials Chemistry A, 2022, 10, 3346-3358.	10.3	25
99	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie - International Edition, 2022, 61, e202115044.	13.8	24
100	Cd(II)-Schiff-Base Metal–Organic Frameworks: Synthesis, Structure, and Reversible Adsorption and Separation of Volatile Chlorocarbons. Crystal Growth and Design, 2011, 11, 5696-5701.	3.0	23
101	Reversible visual thermochromic coordination polymers via single-crystal-to-single-crystal transformation. CrystEngComm, 2014, 16, 304-307.	2.6	23
102	Ferroptosis in cancer therapeutics: a materials chemistry perspective. Journal of Materials Chemistry B, 2021, 9, 8906-8936.	5.8	23
103	A covalent organic framework-based nanoagent for H ₂ S-activable phototherapy against colon cancer. Chemical Communications, 2021, 57, 7240-7243.	4.1	22
104	A covalent organic framework as a photocatalyst for window ledge cross-dehydrogenative coupling reactions. Chemical Communications, 2022, 58, 1530-1533.	4.1	22
105	Cu ₃ L ₂ metal–organic cages for A ³ -coupling reactions: reversible coordination interaction triggered homogeneous catalysis and heterogeneous recovery. Chemical Communications, 2018, 54, 11550-11553.	4.1	20
106	Ambient synthesis of an iminium-linked covalent organic framework for synergetic RNA interference and metabolic therapy of fibrosarcoma. Chemical Science, 2022, 13, 7846-7854.	7.4	20
107	Visual Recognition and Removal of C ₂ H ₂ from C ₂ H ₄ /C ₂ H ₂ Mixtures by a Cu ^I -MOF. Inorganic Chemistry, 2018, 57, 6218-6221.	4.0	19
108	New Agl Organometallic Coordination Polymers and MII (M = Cull and Coll) Inorganic Supramolecular Complexes Generated from New Fulvene-Type Ligands. European Journal of Inorganic Chemistry, 2003, 2003, 4017-4024.	2.0	18

#	Article	IF	CITATIONS
109	New Ag(i) inorganic–organic coordination polymers and M(ii) (M = Co(ii) and Mn(ii)) molecular complexes generated from a new type of fulvene ligand. Dalton Transactions, 2003, , 4324-4330.	3.3	18
110	Reversible adsorption and separation of chlorocarbons and BTEX based on Cu(<scp>ii</scp>)-metal organic framework. CrystEngComm, 2015, 17, 4102-4109.	2.6	18
111	Synthesis of covalent organic frameworks via Kabachnik-Fields reaction for water treatment. Journal of Hazardous Materials, 2022, 433, 128831.	12.4	18
112	p-Benzoquinone adsorption–separation, sensing and its photoinduced transformation within a robust Cd(<scp>ii</scp>)-MOF in a SC–SC fashion. Chemical Communications, 2015, 51, 7443-7446.	4.1	17
113	Porous organic polymer with in situ generated palladium nanoparticles as a phase-transfer catalyst for Sonogashira cross-coupling reaction in water. RSC Advances, 2019, 9, 21671-21678.	3.6	17
114	Bird-like spiro-metallacyclic complexes based on a bent oxadiazole bridging ligand. CrystEngComm, 2009, 11, 1281.	2.6	16
115	Visual Synchronous Exchange of Metal Nodes and Counteranions Constituting a Cobalt(II) Coordination Polymer. Inorganic Chemistry, 2014, 53, 10791-10793.	4.0	16
116	Gram-Scale Synthesis of Cu(II)@COF via Solid-State Coordination Approach for Catalysis of Alkyne-Dihalomethane-Amine Coupling. Inorganic Chemistry, 2021, 60, 3393-3400.	4.0	16
117	Synthesis, structural characterization and properties of Ag(i)-complexes based on double-armed 1,3,4-oxadiazole bridging ligands. CrystEngComm, 2011, 13, 6850.	2.6	15
118	Cd(<scp>ii</scp>)-MOF-IM: post-synthesis functionalization of a Cd(<scp>ii</scp>)-MOF as a triphase transfer catalyst. Chemical Communications, 2016, 52, 6989-6992.	4.1	15
119	Dual-Metal <i>N</i> -Heterocyclic Carbene Complex (M = Au and Pd)-Functionalized UiO-67 MOF for Alkyne Hydration–Suzuki Coupling Tandem Reaction. Journal of Organic Chemistry, 2021, 86, 1818-1826.	3.2	15
120	A CuS- and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy. Chemical Communications, 2022, 58, 2387-2390.	4.1	15
121	A BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes. Chemical Science, 2022, 13, 1906-1911.	7.4	15
122	Construction of acid–base bifunctional covalent organic frameworks <i>via</i> Doebner reaction for catalysing cascade reaction. Chemical Communications, 2022, 58, 2508-2511.	4.1	14
123	Construction of Nanoscale Covalent Organic Frameworks via Photocatalysisâ€Involved Cascade Reactions for Tumor‣elective Treatment. Advanced Therapeutics, 2022, 5, .	3.2	13
124	Nanoscale covalent organic framework for the low-temperature treatment of tumor growth and lung metastasis. Science China Materials, 2022, 65, 1122-1133.	6.3	13
125	Synthesis, structure and multifunctional catalytic properties of a Cu(<scp>i</scp>)-coordination polymer with outer-hanging CuBr ₂ . RSC Advances, 2016, 6, 108645-108653.	3.6	12
126	Nickel-metalated porous organic polymer for Suzuki–Miyaura cross-coupling reaction. RSC Advances, 2019, 9, 20266-20272.	3.6	12

#	Article	IF	CITATIONS
127	Polydopamine-Based Multifunctional Antitumor Nanoagent for Phototherapy and Photodiagnosis by Regulating Redox Balance. ACS Applied Bio Materials, 2020, 3, 8667-8675.	4.6	12
128	Reusable Palladium N-Heterocyclic Tetracarbene for Aqueous Suzuki–Miyaura Cross-Coupling Reaction: Homogeneous Catalysis and Heterogeneous Recovery. Organometallics, 2018, 37, 1645-1648.	2.3	11
129	A Novel Cascade Supramolecular Complex with a Reversible Nanosized 18-Component H-Bonded {(C6H6)6(SbF6)12}12- Cage Unit Templated by a Chiral Metalâ°'Organic Complex. Inorganic Chemistry, 2006, 45, 9157-9159.	4.0	10
130	Single-molecular phosphorus phthalocyanine-based near-infrared-II nanoagent for photothermal antitumor therapy. RSC Advances, 2020, 10, 22656-22662.	3.6	10
131	A palladium–carbon-connected organometallic framework and its catalytic application. Chemical Communications, 2019, 55, 14414-14417.	4.1	9
132	A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO 3 for Synergistic Tumor Therapy. Angewandte Chemie, 2020, 132, 18198-18203.	2.0	9
133	Combination of a Metal-N-Heterocyclic-Carbene Catalyst and a Chiral Aminocatalyst within a Covalent Organic Framework: a Powerful Cooperative Approach for Relay Asymmetric Catalysis. Inorganic Chemistry, 2022, 61, 2455-2462.	4.0	9
134	Reversible adsorption and separation of volatile aromatics based on a porous Cd(<scp>ii</scp>) MOF. CrystEngComm, 2015, 17, 8657-8663.	2.6	8
135	A covalent organic framework with a self-contained light source for photodynamic therapy. Chemical Communications, 2022, 58, 5245-5248.	4.1	8
136	A metal–organic cage-based nanoagent for enhanced photodynamic antitumor therapy. Chemical Communications, 2021, 57, 7954-7957.	4.1	7
137	Photoinduced charge separation enhanced by the confinement of electron donor and acceptor at different surfaces of porous TiO2 nanotubes and its application in olefin oxidation. Journal of Materials Chemistry, 2012, 22, 11915.	6.7	6
138	Synthesis of fulvene-containing boron complexes with aggregation-induced emission and mechanochromic luminescence. Chemical Communications, 2020, 56, 14435-14438.	4.1	6
139	Coordination-driven synthesis of Ag(I) compounds based on a double emission ligand consisting of 1,3,4-oxadiazole and cyclotriphosphazene units. Journal of Coordination Chemistry, 2012, 65, 3299-3307.	2.2	5
140	Coordination polymer-templated photoinduced [2 + 2] dimerization of pyridine-based derivative. CrystEngComm, 2012, 14, 8499.	2.6	5
141	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie, 2022, 134, .	2.0	5
142	Melamine-assisted synthesis of cobalt–nickel coordination polymers as electrode materials for supercapacitors. Journal of Materials Science, 2021, 56, 13752-13762.	3.7	4
143	Synthesis, Structure, and Ligandâ€Centered Catalytic Properties of M ^{II} Coordination Polymers (M=Zn ^{II} , Cd ^{II} , Hg ^{II}) with Open Pyridyl <i>N</i> â€Oxide Sites. ChemPlusChem, 2016, 81, 743-751.	2.8	3
144	Three one-dimensional coordination polymers based on 1,1′-bis(pyridin-4-ylmethyl)-2,2′-bi-1H-benzimidazole and HgX2(X= Cl, Br and I). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 37-42.	0.5	2

#	Article	IF	CITATIONS
145	`0'- and `8'-shaped complexes generated from a nano-sized oxadiazole-containing organic ligand with Cdl ₂ and Cul. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 31-36.	0.5	2
146	Copper(II)–Silver(I) Macrocyclic Metal–Organic Framework: A Highly Efficient Reusable Triplet Oxygen Collector and Singlet Oxygen Generator. Inorganic Chemistry, 2017, 56, 1049-1052.	4.0	2
147	Frontispiece: Homochiral Covalent Organic Frameworks for Asymmetric Catalysis. Chemistry - A European Journal, 2020, 26, .	3.3	2
148	Near-infrared and metal-free tetra(butylamino)phthalocyanine nanoparticles for dual modal cancer phototherapy. RSC Advances, 2020, 10, 25958-25965.	3.6	1
149	Frontispiece: Covalent Organic Frameworks (COFs) for Cancer Therapeutics. Chemistry - A European Journal, 2020, 26, .	3.3	0
150	Innentitelbild: Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis (Angew. Chem. 25/2022). Angewandte Chemie, 2022, 134, .	2.0	0