
Lauro Chiaraluce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035982/publications.pdf Version: 2024-02-01

LAUDO CHIADALLICE

#	Article	IF	CITATIONS
1	Aftershocks driven by a high-pressure CO2 source at depth. Nature, 2004, 427, 724-727.	27.8	714
2	The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismological Research Letters, 2017, 88, 757-771.	1.9	349
3	The 2009 L'Aquila (central Italy) M _W 6.3 earthquake: Main shock and aftershocks. Geophysical Research Letters, 2009, 36, .	4.0	291
4	The 1997 Umbria-Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 1998, 25, 2861-2864.	4.0	280
5	Radiography of a normal fault system by 64,000 highâ€precision earthquake locations: The 2009 L'Aquila (central Italy) case study. Journal of Geophysical Research: Solid Earth, 2013, 118, 1156-1176.	3.4	192
6	Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. Journal of Geophysical Research, 2003, 108, .	3.3	141
7	The anatomy of the 2009 L'Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. Journal of Geophysical Research, 2011, 116, .	3.3	135
8	Architecture and mechanics of an active lowâ€angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. Journal of Geophysical Research, 2007, 112, .	3.3	119
9	Fluid flow and seismicity pattern: Evidence from the 1997 Umbria-Marche (central Italy) seismic sequence. Geophysical Research Letters, 2005, 32, .	4.0	102
10	Unravelling the complexity of Apenninic extensional fault systems: A review of the 2009 L'Aquila earthquake (Central Apennines, Italy). Journal of Structural Geology, 2012, 42, 2-18.	2.3	97
11	Complex Normal Faulting in the Apennines Thrust-and-Fold Belt: The 1997 Seismic Sequence in Central Italy. Bulletin of the Seismological Society of America, 2004, 94, 99-116.	2.3	84
12	Modeling seismicity rate changes during the 1997 Umbriaâ€Marche sequence (central Italy) through a rate―and stateâ€dependent model. Journal of Geophysical Research, 2008, 113, .	3.3	83
13	Active faults and induced seismicity in the Val d'Agri area (Southern Apennines, Italy). Geophysical Journal International, 2009, 178, 488-502.	2.4	72
14	Recorded Motions of the 6 April 2009 M _w 6.3 L'Aquila, Italy, Earthquake and Implications for Building Structural Damage: Overview. Earthquake Spectra, 2010, 26, 651-684.	3.1	71
15	Fault zone properties affecting the rupture evolution of the 2009 (M _w 6.1) L'Aquila earthquake (central Italy): Insights from seismic tomography. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	69
16	Machine-Learning-Based High-Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 2021, 1, 11-19.	3.1	68
17	Background seismicity in the Central Apennines of Italy: The Abruzzo region case study. Tectonophysics, 2007, 444, 80-92.	2.2	67
18	Earthquakes and fault zone structure. Geology, 2014, 42, 343-346.	4.4	67

LAURO CHIARALUCE

#	ARTICLE	IF	CITATIONS
19	Connecting seismically active normal faults with Quaternary geological structures in a complex extensional environment: The Colfiorito 1997 case history (northern Apennines, Italy). Tectonics, 2005, 24, n/a-n/a.	2.8	66
20	On the Relationship between <i>M</i> _w and <i>M</i> _L for Small Earthquakes. Bulletin of the Seismological Society of America, 2016, 106, 2402-2408.	2.3	63
21	A novel and versatile apparatus for brittle rock deformation. International Journal of Rock Mechanics and Minings Sciences, 2014, 66, 114-123.	5.8	59
22	Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy. Journal of Structural Geology, 2014, 67, 154-166.	2.3	59
23	The Gubbio fault: can different methods give pictures of the same object?. Journal of Geodynamics, 2003, 36, 51-66.	1.6	52
24	Spatio-temporal distribution of seismic activity during the Umbria-Marche crisis, 1997. Journal of Seismology, 2000, 4, 377-386.	1.3	51
25	Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 2017, 44, 7706-7714.	4.0	49
26	Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche (central Italy) seismic sequence. Journal of Geophysical Research, 2005, 110, .	3.3	43
27	Looking at fault reactivation matching structural geology and seismological data. Journal of Structural Geology, 2005, 27, 937-942.	2.3	40
28	Mainshocks and aftershocks of the 2002 molise seismic sequence, southern Italy. Journal of Seismology, 2005, 9, 487-494.	1.3	38
29	Fineâ€Scale Structure of the 2016–2017 Central Italy Seismic Sequence From Data Recorded at the Italian National Network. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018440.	3.4	38
30	Performance of Earthquake Early Warning Systems during the 2016–2017 MwÂ5–6.5 Central Italy Sequence. Seismological Research Letters, 2018, 89, 1-12.	1.9	36
31	The Amatrice 2016 seismic sequence: a preliminary look at the mainshock and aftershocks distribution. Annals of Geophysics, 2016, 59, .	1.0	36
32	Foreshock sequence of September 26th, 1997 Umbria-Marche earthquakes. Journal of Seismology, 2000, 4, 387-399.	1.3	35
33	Assessment of earthquake locations in 3â€Ð deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy). Journal of Geophysical Research: Solid Earth, 2016, 121, 8113-8135.	3.4	30
34	Mixedâ€Mode Slip Behavior of the Altotiberina Lowâ€Angle Normal Fault System (Northern Apennines,) Tj ETQq Research: Solid Earth, 2017, 122, 10,220.	0 0 0 rgB1 3.4	[/Overlock 10 29
35	The influence of subsurface geology on the distribution of earthquakes during the 2016â€â€"2017 Central Italy seismic sequence. Tectonophysics, 2021, 807, 228797.	2.2	29
36	Stress aligned cracks in the upper crust of the Val d'Agri region as revealed by shear wave splitting. Geophysical Journal International, 2009, 179, 601-614.	2.4	27

3

LAURO CHIARALUCE

#	Article	IF	CITATIONS
37	Loading Rate Variations Along a Midcrustal Shear Zone Preceding the M w 6.0 Earthquake of 24 August 2016 in Central Italy. Geophysical Research Letters, 2017, 44, 12,170.	4.0	26
38	From surface geology to aftershock analysis: Constraints on the geometry of the L'Aquila 2009 seismogenic fault system. Italian Journal of Geosciences, 2012, , 330-347.	0.8	25
39	Space and time variations of crustal anisotropy during the 1997 Umbria-Marche, central Italy, seismic sequence. Geophysical Journal International, 2006, 167, 1482-1490.	2.4	24
40	The Alto Tiberina Near Fault Observatory (northern Apennines, Italy). Annals of Geophysics, 2014, 57, .	1.0	24
41	A decade of passive seismic monitoring experiments with local networks in four Italian regions. Tectonophysics, 2009, 476, 85-98.	2.2	22
42	SISMIKO: emergency network deployment and data sharing for the 2016 central Italy seismic sequence. Annals of Geophysics, 2016, 59, .	1.0	19
43	The role of rheology, crustal structures and lithology in the seismicity distribution of the northern Apennines. Tectonophysics, 2017, 694, 280-291.	2.2	18
44	Rapid response to the earthquake emergency of May 2012 in the Po Plain, northern Italy. Annals of Geophysics, 2012, 55, .	1.0	18
45	On the mechanical behaviour of a low-angle normal fault: the Alto Tiberina fault (Northern) Tj ETQq1 1 0.78431	4 rgBT /0\ 2.8	verlack 10 Tf 5
46	An automatically generated high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including <i>P</i> and <i>S</i> phase arrival times. Geophysical Journal International, 2021, 225, 555-571.	2.4	16
47	Fault Planes, Fault Zone Structure and Detachment Fragmentation Resolved With Highâ€Precision Aftershock Locations of the 2016–2017 Central Italy Sequence. Geophysical Research Letters, 2021, 48, e2021GL092918.	4.0	14
48	The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of) Tj ETQq0 0 0	rgBT_{Ove	rlock 10 Tf 50
49	Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency. Annals of Geophysics, 2011, 54, .	1.0	11
50	Intermittent Slip Along the Alto Tiberina Lowâ€Angle Normal Fault in Central Italy. Geophysical Research Letters, 2020, 47, e2020GL089039.	4.0	9
51	Surface temperature and precipitation affecting CPS signals before the 2009 L'Aquila earthquake (Central Italy). Geophysical Journal International, 2017, 210, 911-918.	2.4	8
52	Seismological constraints for the dyke emplacement of the July-August 2001 lateral eruption at Mt. Etna volcano, Italy. Annals of Geophysics, 2013, 46, .	1.0	8
53	Correction to "Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italyâ€: Journal of Geophysical Research, 2007, 112, .	3.3	5
54	Change-point analysis of <i>VP</i> / <i>VS</i> ratio time-series using a trans-dimensional McMC algorithm: applied to the Alto Tiberina Near Fault Observatory seismic network (Northern Apennines,) Tj ETQqO	0 022gBT /	Overlock 10 T

#	Article	IF	CITATIONS
55	Three-dimensional paganica fault morphology obtained from hypocenter clustering (L'Aquila 2009) Tj ETQq1 1 0.	.784314 r 2.2	gBŢ /Overloc
56	Implications of Receiver Plane Uncertainty for the Static Stress Triggering Hypothesis. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1