## Akari Hagiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703596/publications.pdf Version: 2024-02-01



Δκαρι Ηλεινώαρα

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nature Neuroscience, 2010, 13, 1404-1412.                                         | 14.8 | 214       |
| 2  | Serotonergic modulation of odor input to the mammalian olfactory bulb. Nature Neuroscience, 2009, 12, 784-791.                                                                           | 14.8 | 193       |
| 3  | Sept4, a Component of Presynaptic Scaffold and Lewy Bodies, Is Required for the Suppression of α-Synuclein Neurotoxicity. Neuron, 2007, 53, 519-533.                                     | 8.1  | 156       |
| 4  | Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo.<br>Journal of Cell Biology, 2007, 176, 1061-1071.                               | 5.2  | 153       |
| 5  | Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. Journal of Comparative Neurology, 2005, 489, 195-216. | 1.6  | 89        |
| 6  | Immunocytochemical localization of the alpha1A subunit of the P/Q-type calcium channel in the rat cerebellum. European Journal of Neuroscience, 2004, 19, 2169-2178.                     | 2.6  | 83        |
| 7  | Neuronal Apoptosis by Apolipoprotein E4 through Low-Density Lipoprotein Receptor-Related Protein and Heterotrimeric GTPases. Journal of Neuroscience, 2000, 20, 8401-8409.               | 3.6  | 80        |
| 8  | Deletion of the Presynaptic Scaffold CAST Reduces Active Zone Size in Rod Photoreceptors and Impairs<br>Visual Processing. Journal of Neuroscience, 2012, 32, 12192-12203.               | 3.6  | 77        |
| 9  | Submembranous septins as relatively stable components of actinâ€based membrane skeleton.<br>Cytoskeleton, 2011, 68, 512-525.                                                             | 2.0  | 64        |
| 10 | Optophysiological analysis of associational circuits in the olfactory cortex. Frontiers in Neural Circuits, 2012, 6, 18.                                                                 | 2.8  | 64        |
| 11 | CAST/ELKS Proteins Control Voltage-Gated Ca2+ Channel Density and Synaptic Release Probability at a<br>Mammalian Central Synapse. Cell Reports, 2018, 24, 284-293.e6.                    | 6.4  | 57        |
| 12 | Physical and functional interaction of the active zone protein CAST/ERC2 and the Â-subunit of the voltage-dependent Ca2+ channel. Journal of Biochemistry, 2012, 152, 149-159.           | 1.7  | 56        |
| 13 | Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain. Journal of Biochemistry, 2011, 149, 693-700.                                | 1.7  | 32        |
| 14 | Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance.<br>Journal of Cell Biology, 2018, 217, 3993-4006.                                          | 5.2  | 32        |
| 15 | Vangl2, the planner cell polarity protein, is complexed with postsynaptic density protein PSDâ€95. FEBS<br>Letters, 2013, 587, 1453-1459.                                                | 2.8  | 24        |
| 16 | The planar cell polarity protein Vangl2 bidirectionally regulates dendritic branching in cultured hippocampal neurons. Molecular Brain, 2014, 7, 79.                                     | 2.6  | 22        |
| 17 | SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression. Cell Reports, 2016, 16, 2901-2913.                                                         | 6.4  | 17        |
| 18 | An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.<br>Communications Biology, 2021, 4, 461.                                                      | 4.4  | 14        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neuronal Cell Apoptosis by a Receptor-Binding Domain Peptide of ApoE4, Not through Low-Density<br>Lipoprotein Receptor-Related Protein. Biochemical and Biophysical Research Communications, 2000,<br>278, 633-639. | 2.1 | 12        |
| 20 | SADâ€B kinase regulates preâ€synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory. Journal of Neurochemistry, 2016, 136, 36-47.                               | 3.9 | 10        |
| 21 | Distribution of serine/threonine kinase SAD-B in mouse peripheral nerve synapse. NeuroReport, 2011, 22, 319-325.                                                                                                    | 1.2 | 7         |
| 22 | Planar cell polarity protein Vangl2 and its interacting protein Ap2m1 regulate dendritic branching in cortical neurons. Genes To Cells, 2021, 26, 987-998.                                                          | 1.2 | 5         |
| 23 | Impaired experience-dependent maternal care in presynaptic active zone protein CAST-deficient dams.<br>Scientific Reports, 2020, 10, 5238.                                                                          | 3.3 | 1         |
| 24 | Double deletion of the active zone proteins CAST/ELKS in the mouse forebrain causes high mortality of newborn pups. Molecular Brain, 2020, 13, 13.                                                                  | 2.6 | 0         |