Mingfei Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035413/publications.pdf Version: 2024-02-01

MINCEEL DAN

#	Article	IF	CITATIONS
1	One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing. Journal of Materials Chemistry A, 2016, 4, 15880-15887.	5.2	133
2	Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 2020, 10, 930.	1.9	87
3	A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosensors and Bioelectronics, 2018, 102, 357-364.	5.3	86
4	Metal–organic frameworks supported surface–imprinted nanoparticles for the sensitive detection of metolcarb. Biosensors and Bioelectronics, 2016, 79, 359-363.	5.3	69
5	One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosensors and Bioelectronics, 2016, 77, 950-956.	5.3	68
6	Molecularly imprinted polymer on ionic liquid-modified CdSe/ZnS quantum dots for the highly selective and sensitive optosensing of tocopherol. Journal of Materials Chemistry, 2012, 22, 19882.	6.7	66
7	A Review of Methods for Detecting Melamine in Food Samples. Critical Reviews in Analytical Chemistry, 2017, 47, 51-66.	1.8	61
8	Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials, 2019, 9, 1330.	1.9	59
9	Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosensors and Bioelectronics, 2019, 128, 129-136.	5.3	58
10	Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. Nanomaterials, 2020, 10, 209.	1.9	54
11	Advances on Food-Derived Peptidic Antioxidants—A Review. Antioxidants, 2020, 9, 799.	2.2	51
12	Nanomaterials for Electrochemical Immunosensing. Sensors, 2017, 17, 1041.	2.1	48
13	A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Advances, 2014, 4, 2764-2771.	1.7	46
14	Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol. Biosensors and Bioelectronics, 2016, 85, 337-342.	5.3	46
15	A SiO2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chemistry, 2022, 381, 132225.	4.2	43
16	Review of Research into the Determination of Acrylamide in Foods. Foods, 2020, 9, 524.	1.9	41
17	An ionic liquid modified dummy molecularly imprinted polymer as a solid-phase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples. Analytical Methods, 2013, 5, 6128.	1.3	40
18	Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine). Analytica Chimica Acta, 2014, 806, 136-143.	2.6	40

Mingfei Pan

#	Article	IF	CITATIONS
19	A novel ionic liquid polymer material with high binding capacity for proteins. Journal of Materials Chemistry, 2012, 22, 3965.	6.7	39
20	A Sensitive Electrochemical Immunosensor Based on PAMAM Dendrimer-Encapsulated Au for Detection of Norfloxacin in Animal-Derived Foods. Sensors, 2018, 18, 1946.	2.1	39
21	Synthesis and characterization of a molecularly imprinted polymer and its application as SPE enrichment sorbent for determination of trace methimazole in pig samples using HPLC-UV. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1531-1536.	1.2	36
22	Molecularly imprinted biomimetic QCM sensor involving a poly(amidoamine) dendrimer as a functional monomer for the highly selective and sensitive determination of methimazole. Sensors and Actuators B: Chemical, 2015, 207, 588-595.	4.0	34
23	An "Off–On―Rhodamine 6G Hydrazide-Based Output Platform for Fluorescence and Visual Dual-Mode Detection of Lead(II). Journal of Agricultural and Food Chemistry, 2021, 69, 7209-7217.	2.4	31
24	Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. Sensors, 2017, 17, 1984.	2.1	29
25	Substitution of Antibody with Molecularly Imprinted Film in Enzyme-Linked Immunosorbent Assay for Determination of Trace Ractopamine in Urine and Pork Samples. Food Analytical Methods, 2011, 4, 590-597.	1.3	28
26	Electrochemical sensor using methimazole imprinted polymer sensitized with MWCNTs and Salen-Co(III) as recognition element. Biosensors and Bioelectronics, 2012, 31, 11-16.	5.3	27
27	Production of multi-walled carbon nanotube/poly(aminoamide) dendrimer hybrid and its application to piezoelectric immunosensing for metolcarb. Sensors and Actuators B: Chemical, 2013, 188, 949-956.	4.0	26
28	Development of Lateral Flow Immunochromatographic Assays Using Colloidal Au Sphere and Nanorods as Signal Marker for the Determination of Zearalenone in Cereals. Foods, 2020, 9, 281.	1.9	25
29	An electrodeposited molecularly imprinted quartz crystal microbalance sensor sensitized with AuNPs and rGO material for highly selective and sensitive detection of amantadine. RSC Advances, 2018, 8, 6600-6607.	1.7	24
30	Core-shell AuNRs@Ag-enhanced and magnetic separation-assisted SERS immunosensing platform for amantadine detection in animal-derived foods. Sensors and Actuators B: Chemical, 2021, 349, 130783.	4.0	23
31	Molecularly imprinted electrodeposition o-aminothiophenol sensor for selective and sensitive determination of amantadine in animal-derived foods. Sensors and Actuators B: Chemical, 2017, 238, 32-39.	4.0	19
32	Reproducible Molecularly Imprinted QCM Sensor for Accurate, Stable, and Sensitive Detection of Enrofloxacin Residue in Animal-Derived Foods. Food Analytical Methods, 2018, 11, 495-503.	1.3	18
33	Indirect competitive ELISA and colloidal gold-based immunochromatographic strip for amantadine detection in animal-derived foods. Analytical Methods, 2019, 11, 2027-2032.	1.3	18
34	A Reproducible Surface Plasmon Resonance Immunochip for the Label-Free Detection of Amantadine in Animal-Derived Foods. Food Analytical Methods, 2019, 12, 1007-1016.	1.3	17
35	Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Research International, 2021, 148, 110578.	2.9	17
36	Synthesis of Magnetic Metal-Organic Frame Material and Its Application in Food Sample Preparation. Foods, 2020, 9, 1610.	1.9	16

Mingfei Pan

#	Article	IF	CITATIONS
37	Aptamer-Based Fluorescent Biosensor for the Rapid and Sensitive Detection of Allergens in Food Matrices. Foods, 2021, 10, 2598.	1.9	15
38	Preparation of a molecularly imprinted polymer using TMB as a dummy template and its application as SPE sorbent for determination of six PBBs in water and fish samples. Analytical Methods, 2011, 3, 393-399.	1.3	14
39	Electrochemical sensing platform for the detection of methyl parathion applying highly biocompatible non-covalent functionalized phosphonium-based ionic liquid@MWCNTs hybrid to immobilize hemoglobin. Biosensors and Bioelectronics, 2022, 197, 113755.	5.3	14
40	Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Analytical and Bioanalytical Chemistry, 2019, 411, 5745-5753.	1.9	13
41	A UCMPs@MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products. Journal of Nanobiotechnology, 2022, 20, 51.	4.2	13
42	Reproducible Molecularly Imprinted Piezoelectric Sensor for Accurate and Sensitive Detection of Ractopamine in Swine and Feed Products. Sensors, 2018, 18, 1870.	2.1	12
43	Simultaneous determination of five quinoxaline-1,4-dioxides and two major metabolites in surface water by on-line solid phase extraction coupled to high-performance liquid chromatography. Analytical Methods, 2011, 3, 1821.	1.3	11
44	Stable and Sensitive Detection of Sulfonamide Residues in Animal-Derived Foods Using a Reproducible Surface Plasmon Resonance Immunosensor. Food Analytical Methods, 2017, 10, 2027-2035.	1.3	11
45	Development of Indirect Competitive ELISA and Visualized Multicolor ELISA Based on Gold Nanorods Growth for the Determination of Zearalenone. Foods, 2021, 10, 2654.	1.9	11
46	A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. Biosensors, 2021, 11, 53.	2.3	9
47	In-situ graft-crosslinked gold nanoparticles with high-density surface defects and coated with a polytaurine membrane for the voltammetric determination of dopamine. Mikrochimica Acta, 2019, 186, 746.	2.5	2