
Roberto Rella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sensors and Actuators B: Chemical, 2007, 127, 426-431.	7.8	161
2	Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors. Journal of Materials Chemistry, 2011, 21, 16049.	6.7	91
3	Gas Sensitivity Measurements on NO2Sensors Based on Copper(II) Tetrakis(n-butylaminocarbonyl)phthalocyanine LB Films. Langmuir, 1999, 15, 1748-1753.	3.5	89
4	Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sensors and Actuators B: Chemical, 2008, 132, 107-115.	7.8	89
5	Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sensors and Actuators B: Chemical, 1998, 48, 362-367.	7.8	86
6	Au Nanoparticles Prepared by Physical Method on Si and Sapphire Substrates for Biosensor Applications. Journal of Physical Chemistry B, 2005, 109, 17347-17349.	2.6	84
7	Solid State Gas Sensors: State of the Art and Future Activities. ChemInform, 2004, 35, no.	0.0	83
8	Langmuirâ^'Blodgett Multilayers Based on Copper Phthalocyanine as Gas Sensor Materials:Â Active Layerâ^'Gas Interaction Model and Conductivity Modulation. Langmuir, 1997, 13, 6562-6567.	3.5	80
9	Spin-coated thin films of metal porphyrin–phthalocyanine blend for an optochemical sensor of alcohol vapours. Sensors and Actuators B: Chemical, 2004, 100, 88-93.	7.8	78
10	Properties of vanadium oxide thin films for ethanol sensor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 34-38.	2.1	76
11	A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sensors and Actuators B: Chemical, 1999, 58, 350-355.	7.8	76
12	Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor. Biosensors and Bioelectronics, 2014, 58, 114-120.	10.1	75
13	Physical characterization of hafnium oxide thin films and their application as gas sensing devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3564-3568.	2.1	73
14	Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol–gel thin film. Sensors and Actuators B: Chemical, 2001, 77, 503-511.	7.8	73
15	Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosensors and Bioelectronics, 2005, 21, 894-900.	10.1	73
16	Fe ₃ O ₄ /γ-Fe ₂ O ₃ Nanoparticle Multilayers Deposited by the Langmuir–Blodgett Technique for Gas Sensors Application. Langmuir, 2014, 30, 1190-1197.	3.5	73
17	Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array. Sensors and Actuators B: Chemical, 2000, 69, 230-235.	7.8	72
18	Titanium oxide thin films for NH3 monitoring: Structural and physical characterizations. Journal of Applied Physics, 1997, 82, 54-59.	2.5	69

#	Article	IF	CITATIONS
19	CO sensing properties of SnO2 thin films prepared by the sol-gel process. Thin Solid Films, 1997, 304, 339-343.	1.8	69
20	Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation. Sensors, 2009, 9, 2682-2696.	3.8	69
21	Preparation and characterization of cobalt porphyrin modified tin dioxide films for sensor applications. Sensors and Actuators B: Chemical, 2004, 103, 339-343.	7.8	67
22	Tin oxide-based gas sensors prepared by the sol–gel process. Sensors and Actuators B: Chemical, 1997, 44, 462-467.	7.8	65
23	Optical absorption and photoconductovity in amorphous indium selenide thin films. Thin Solid Films, 1987, 148, 273-278.	1.8	63
24	Automotive application of sol–gel TiO2 thin film-based sensor for lambda measurement. Sensors and Actuators B: Chemical, 2003, 95, 66-72.	7.8	60
25	Chemical Characteristics and Biological Activity of Organic Substances Extracted from Soils by Root Exudates. Soil Science Society of America Journal, 2005, 69, 2012-2019.	2.2	57
26	Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing. Scientific Reports, 2018, 8, 12640.	3.3	55
27	Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sensors and Actuators B: Chemical, 2005, 106, 212-220.	7.8	53
28	Electrical and optical characterization of electron beam evaporated In2Se3 thin films. Physica Status Solidi A, 1995, 148, 431-438.	1.7	52
29	Metallophthalocyanines thin films in array configuration for electronic optical nose applications. Sensors and Actuators B: Chemical, 2003, 96, 489-497.	7.8	52
30	Optical gas sensing through nanostructured ZnO films with different morphologies. Sensors and Actuators B: Chemical, 2010, 145, 167-173.	7.8	51
31	Air quality monitoring by means of sol–gel integrated tin oxide thin films. Sensors and Actuators B: Chemical, 1999, 58, 283-288.	7.8	50
32	Optochemical vapour detection using spin coated thin films of metal substituted phthalocyanines. Sensors and Actuators B: Chemical, 2003, 89, 86-91.	7.8	50
33	Optochemical vapour detection using spin coated thin film of ZnTPP. Sensors and Actuators B: Chemical, 2006, 115, 12-16.	7.8	49
34	Surface plasmon resonance optical gas sensing of nanostructured ZnO films. Sensors and Actuators B: Chemical, 2008, 130, 531-537.	7.8	49
35	Thin Film Construction and Characterization and Gas-Sensing Performances of a Tailored Phenyleneâ^'Thienylene Copolymer. Journal of the American Chemical Society, 2003, 125, 9055-9061.	13.7	46
36	Variation in the Optical Sensing Responses toward Vapors of a Porphyrin/Phthalocyanine Hybrid Thin Film. Chemistry of Materials, 2004, 16, 2083-2090.	6.7	46

#	Article	IF	CITATIONS
37	Investigation on alcohol vapours/TiO2 nanocrystal thin films interaction by SPR technique for sensing application. Sensors and Actuators B: Chemical, 2004, 100, 75-80.	7.8	45
38	Improved gas sensing performances in SPR sensors by transducers activation. Sensors and Actuators B: Chemical, 2013, 179, 175-186.	7.8	45
39	Effects of thermal annealing on optical absorption of amorphous indium selenide thin films. Solar Energy Materials and Solar Cells, 1987, 15, 209-218.	0.4	44
40	A comparison between V2O5 and WO3 thin films as sensitive elements for NO detection. Thin Solid Films, 1999, 350, 264-268.	1.8	44
41	Silica Nanowires Decorated with Metal Nanoparticles for Refractive Index Sensors: Three-Dimensional Metal Arrays and Light Trapping at Plasmonic Resonances. Journal of Physical Chemistry C, 2014, 118, 685-690.	3.1	44
42	Sprayed SnO2 thin films for NO2 sensors. Sensors and Actuators B: Chemical, 1999, 58, 370-374.	7.8	43
43	Structural and spectroscopic characterization of Cu(II) [tetrakis-(3,3-dimethyl-l-butoxycarbonyl)] phthalocyanine thin films deposited by the Langmuir—Blodgett technique. Thin Solid Films, 1995, 265, 58-65.	1.8	41
44	SnO2 thin films for gas sensor prepared by r.f. reactive sputtering. Sensors and Actuators B: Chemical, 1995, 25, 465-468.	7.8	41
45	Gas sensing measurements and analysis of the optical properties of poly[3-(butylthio)thiophene] Langmuir–Blodgett films. Sensors and Actuators B: Chemical, 2000, 68, 203-209.	7.8	41
46	A novel multisensing optical approach based on a single phthalocyanine thin films to monitoring volatile organic compounds. Sensors and Actuators B: Chemical, 2006, 113, 516-525.	7.8	41
47	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 741-744.	2.4	40
48	SPR based immunosensor for detection of Legionella pneumophila in water samples. Optics Communications, 2013, 294, 420-426.	2.1	39
49	Effects of NO2 oxidizing gas on a novel phthalocyanine Langmuir-Blodgett thin film. Thin Solid Films, 1996, 286, 256-258.	1.8	38
50	Palladium/Î ³ -Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors. Sensors and Actuators B: Chemical, 2017, 243, 895-903.	7.8	38
51	Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system. Materials Science and Engineering C, 2002, 22, 439-443.	7.3	37
52	Study of the gas optical sensing properties of Au-polyimide nanocomposite films prepared by ion implantation. Sensors and Actuators B: Chemical, 2005, 111-112, 225-229.	7.8	37
53	Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sensors and Actuators B: Chemical, 2013, 182, 232-238.	7.8	37
54	NO2 gas detection by Langmuir-Blodgett films of copper phthalocyanine multilayer structures. Supramolecular Science, 1997, 4, 461-464.	0.7	36

#	Article	IF	CITATIONS
55	Sol–gel derived pure and palladium activated tin oxide films for gas-sensing applications. Sensors and Actuators B: Chemical, 1999, 55, 134-139.	7.8	34
56	Comparison and integration of arrays of quartz resonators and metal-oxide semiconductor chemoresistors in the quality evaluation of olive oils. Sensors and Actuators B: Chemical, 2001, 78, 303-309.	7.8	34
57	Spontaneous deposition of amphiphilic porphyrin films on glassElectronic supplementary information (ESI) available: detailed kinetic studies and procedures, and aggregation studies on 1H2 and 2H2. See http://www.rsc.org/suppdata/nj/b4/b403591g/. New Journal of Chemistry, 2004, 28, 1123.	2.8	34
58	Enhancement of the optically activated NO2 gas sensing response of brookite TiO2 nanorods/nanoparticles thin films deposited by matrix-assisted pulsed-laser evaporation. Sensors and Actuators B: Chemical, 2012, 161, 869-879.	7.8	34
59	Magnetophotonics for sensing and magnetometry toward industrial applications. Journal of Applied Physics, 2021, 130, .	2.5	34
60	Optical recognition of organic vapours through ultrathin calix[4]pyrrole films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 869-873.	4.7	32
61	Recognition of olive oils by means of an integrated sol–gel SnO2 Electronic Nose. Thin Solid Films, 2002, 418, 59-65.	1.8	32
62	TiO2 nanocrystal films for sensing applications based on surface plasmon resonance. Synthetic Metals, 2005, 148, 25-29.	3.9	32
63	Ethane-Bridged Zn Porphyrins Dimers in Langmuir–SchÃfer Thin Films: Spectroscopic, Morphologic, and Magneto-Optical Surface Plasmon Resonance Characterization. Journal of Physical Chemistry C, 2012, 116, 10734-10742.	3.1	32
64	TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications. Applied Surface Science, 2007, 253, 7937-7941.	6.1	31
65	Characteristics of reactively sputtered Pt–SnO2 thin films for CO gas sensors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2215-2219.	2.1	30
66	Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2007, 253, 6471-6475.	6.1	30
67	Thin films of TiO2 nanocrystals with controlled shape and surface coating for surface plasmon resonance alcohol vapour sensing. Sensors and Actuators B: Chemical, 2007, 126, 562-572.	7.8	29
68	Enhanced sensing properties of cobalt bis-porphyrin derivative thin films by a magneto-plasmonic-opto-chemical sensor. Sensors and Actuators B: Chemical, 2017, 246, 1039-1048.	7.8	29
69	Langmuir-Blodgett films of Cu(II)-tetrakis (3,3-dimethylbutoxycarbonyl) phthalocyanine: a spectrophotometric and TEM analysis of their structure and morphology. Thin Solid Films, 1996, 280, 249-255.	1.8	28
70	UV-Vis absorption optosensing materials based on metallophthalocyanines thin films. Sensors and Actuators B: Chemical, 2004, 100, 135-138.	7.8	28
71	MAPLE deposition of methoxy Ge triphenylcorrole thin films. Applied Physics A: Materials Science and Processing, 2008, 93, 651-654.	2.3	28
72	A study of physical properties and gas-surface interaction of vanadium oxide thin films. Thin Solid Films, 1999, 349, 254-259.	1.8	27

#	Article	IF	CITATIONS
73	Liquid phase SPR imaging experiments for biosensors applications. Biosensors and Bioelectronics, 2004, 20, 1140-1148.	10.1	27
74	Surface plasmon resonance imaging technique for nucleic acid detection. Sensors and Actuators B: Chemical, 2008, 130, 82-87.	7.8	27
75	Preparation and characterization of Langmuir-Blodgett films containing fullerene. Thin Solid Films, 1994, 243, 367-370.	1.8	26
76	Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis. Sensors and Actuators B: Chemical, 2017, 239, 100-112.	7.8	25
77	TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications. Journal of Applied Physics, 2012, 112, .	2.5	24
78	Influence of the Deposition Parameters on the Physical Properties of Tin Oxide Thin Films. Materials Science Forum, 1996, 203, 143-148.	0.3	23
79	Analysis of dry salami by means of an electronic nose and correlation with microbiological methods. Sensors and Actuators B: Chemical, 2003, 95, 123-131.	7.8	23
80	Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters. Applied Physics A: Materials Science and Processing, 2010, 101, 759-764.	2.3	23
81	Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers. Applied Physics A: Materials Science and Processing, 2011, 104, 963-968.	2.3	23
82	Properties of reactively sputtered tin oxide films as CO gas sensors. Sensors and Actuators B: Chemical, 1995, 23, 193-195.	7.8	22
83	MAPLE deposition of nanomaterials. Applied Surface Science, 2014, 302, 92-98.	6.1	22
84	Investigation of electronic properties of gallium sulfide single crystals grown by iodine chemical transport. Journal of Applied Physics, 1990, 68, 138-142.	2.5	21
85	Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 1998, 53, 69-75.	7.8	21
86	Role of osmium in the electrical transport mechanism of polycrystalline tin oxide thin films. Applied Physics Letters, 2004, 84, 744-746.	3.3	21
87	Optical response of plasma-deposited zinc phthalocyanine films to volatile organic compounds. Sensors and Actuators B: Chemical, 2007, 127, 150-156.	7.8	21
88	MAPLE deposition and characterization of SnO ₂ colloidal nanoparticle thin films. Journal Physics D: Applied Physics, 2009, 42, 095105.	2.8	21
89	Optical characterisation of CN thin films deposited by reactive pulsed laser ablation. Thin Solid Films, 1999, 349, 100-104.	1.8	20
90	Sorption of amines by the Langmuir–Blodgett films of soluble cobalt phthalocyanines: evidence for the supramolecular mechanisms. Biosensors and Bioelectronics, 2004, 20, 1177-1184.	10.1	20

#	Article	IF	CITATIONS
91	Synthesis and characterization of optically transparent epoxy matrix nanocomposites. Materials Science and Engineering C, 2009, 29, 1798-1802.	7.3	20
92	Photoluminescence quenching processes by NO2 adsorption in ZnO nanostructured films. Journal of Applied Physics, 2012, 111, 073520.	2.5	20
93	On the characterisation and gas sensing properties of Cu(II) tetra(alkylamino carbonyl) phthalocyanine LB films. Thin Solid Films, 1998, 327-329, 465-468.	1.8	19
94	Oxygen Optical Gas Sensing by Reversible Fluorescence Quenching in Photo-Oxidized Poly(9,9-dioctylfluorene) Thin Films. Journal of Physical Chemistry B, 2010, 114, 1559-1561.	2.6	19
95	Conductivity and optical absorption in amorphous gallium sulphide thin films. Thin Solid Films, 1989, 172, 179-183.	1.8	18
96	Physical properties of osmium doped tin oxide thin films. Journal of Applied Physics, 1998, 83, 2369-2371.	2.5	18
97	Investigation of the electrical properties of Cdâ€doped indium selenide. Journal of Applied Physics, 1991, 70, 6847-6853.	2.5	17
98	An ellipsometric study of LB films in a controlled atmosphere. Sensors and Actuators B: Chemical, 1998, 48, 328-332.	7.8	17
99	Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process. Journal of Optics (United Kingdom), 2010, 12, 035003.	2.2	17
100	Preparation and characterization of nanostructured materials for an artificial olfactory sensing system. Sensors and Actuators B: Chemical, 2002, 84, 55-59.	7.8	16
101	Determination of optical parameters of colloidal TiO2 nanocrystals-based thin films by using surface plasmon resonance measurments for sensing applications. Sensors and Actuators B: Chemical, 2006, 115, 365-373.	7.8	16
102	Structural and optical properties of molybdenum–tungsten mixed oxide thin films deposited by the sol-gel technique. Journal of Applied Physics, 2003, 93, 3816-3822.	2.5	15
103	Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2009, 255, 9659-9664.	6.1	15
104	Oxide nanoparticle arrays for sensors of CO and NO2 gases. Vacuum, 2012, 86, 590-593.	3.5	15
105	Gold nanoholes fabricated by colloidal lithography: novel insights into nanofabrication, short-range correlation and optical properties. Nanoscale, 2019, 11, 8416-8432.	5.6	15
106	Mixing enhancement induced by viscoelastic micromotors in microfluidic platforms. Chemical Engineering Journal, 2020, 391, 123572.	12.7	15
107	Electrical Characterization of In2Se3 Single Crystals. Physica Status Solidi A, 1991, 126, 437-442.	1.7	14
108	Characterization of novel copper phthalocyanine Langmuir-Blodgett films for NO2 detection. Thin Solid Films, 1996, 284-285, 870-872.	1.8	14

#	Article	IF	CITATIONS
109	Applications in gas-sensing devices of a new macrocyclic copper complex. Sensors and Actuators B: Chemical, 1997, 42, 53-58.	7.8	14
110	Langmuir–Blodgett films of poly[3-(butylthio)thiophene]: optical properties and electrical measurements in controlled atmosphere. Sensors and Actuators B: Chemical, 1999, 57, 125-129.	7.8	14
111	A SnO2 microsensor device for sub-ppm NO2 detection. Sensors and Actuators B: Chemical, 1999, 58, 552-555.	7.8	14
112	Real time oil control by surface plasmon resonance transduction methodology. Sensors and Actuators A: Physical, 2015, 223, 97-104.	4.1	14
113	Au nanoparticles decoration of silica nanowires for improved optical bio-sensing. Sensors and Actuators B: Chemical, 2016, 226, 589-597.	7.8	14
114	Electrical properties of vacuum-deposited polycrystalline InSe thin films. Solar Energy Materials and Solar Cells, 1991, 22, 215-222.	0.4	13
115	Physical characterization of In2Se3 thin films prepared by electron beam evaporation. Vacuum, 1995, 46, 997-1000.	3.5	13
116	Poly[3-(butylthio)thiophene] Langmuir–Blodgett films as selective solid state chemiresistors for nitrogen dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 829-833.	4.7	13
117	Hall effect measurements in gas sensors based on nanosized os-doped sol-gel derived SnO/sub 2/ thin films. IEEE Sensors Journal, 2003, 3, 827-834.	4.7	13
118	Surface plasmon resonance study on the optical sensing properties of nanometric polyimide films to volatile organic vapours. Sensors and Actuators B: Chemical, 2007, 120, 712-718.	7.8	13
119	Electrical and optical properties of ITO and ITO/Cr-doped ITO films. Applied Physics A: Materials Science and Processing, 2010, 101, 753-758.	2.3	13
120	New complexes based on tridentate bispyrazole ligand for optical gas sensing. Materials Chemistry and Physics, 2011, 126, 375-380.	4.0	13
121	Matrix-assisted pulsed laser deposition of polymer and nanoparticle films. Vacuum, 2012, 86, 661-666.	3.5	13
122	Interaction-tailored organization of large-area colloidal assemblies. Beilstein Journal of Nanotechnology, 2018, 9, 1582-1593.	2.8	13
123	Growth and characterization of tin oxide thin films prepared by reactive sputtering. Solar Energy Materials and Solar Cells, 1993, 31, 235-242.	6.2	12
124	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 21, 195-201.	2.4	12
125	Nitric Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Sensor Letters, 2013, 11, 2322-2326.	0.4	12
126	Investigation of deep levels in Znâ€doped InSe single crystals. Journal of Applied Physics, 1992, 71, 2274-2279.	2.5	11

#	Article	IF	CITATIONS
127	NO2 sensitivity of gadolinium bis-phthalocyanine assemblies prepared by ultra-fast LB deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 791-796.	4.7	11
128	Deposition and application in gas sensors of thin films of a bridged chain dialkoxy PPV derivative. Materials Science and Engineering C, 2002, 22, 445-448.	7.3	11
129	Synthesis of tailored phthalocyanines and their application as spin coated films in volatile organic compound detection. Journal of Porphyrins and Phthalocyanines, 2003, 07, 572-578.	0.8	10
130	Sensitive coating for water vapors detection based on thermally sputtered calcein thin films. Talanta, 2010, 82, 1392-1396.	5.5	10
131	Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation. Journal Physics D: Applied Physics, 2011, 44, 365403.	2.8	10
132	Volatile Organic Compounds sensing properties of TbPc2 thin films: Towards a plasmon-enhanced opto-chemical sensor. Sensors and Actuators B: Chemical, 2017, 253, 266-274.	7.8	10
133	Optical absorption and structural characterization of reactively sputtered tellurium suboxide thin films. Applied Surface Science, 1993, 65-66, 313-318.	6.1	9
134	Langmuir-Blodgett films of a phthalocyanine symmetrically functionalized with eight ester units. Materials Science and Engineering C, 1998, 5, 317-320.	7.3	9
135	Structural study of meso-octaethylcalix[4]pyrrole Langmuir–Blodgett films used as gas sensors. Materials Science and Engineering C, 2002, 19, 27-31.	7.3	9
136	Nanoplasmonic Biosensing Approach for Endotoxin Detection in Pharmaceutical Field. Chemosensors, 2021, 9, 10.	3.6	9
137	Reactively sputtered TeOx thin films for optical recording systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 243-245.	2.1	8
138	Compositional and optical characterization of rf sputter deposited TeOx thin films for optical disk application. Vacuum, 1992, 43, 305-308.	3.5	8
139	Gas-sensing properties of multilayers of two new macrocyclic copper complexes. Sensors and Actuators B: Chemical, 1997, 44, 585-589.	7.8	8
140	Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. Nanomaterials, 2022, 12, 380.	4.1	8
141	A SERS study of self-assembled (4-methylmercapto)benzaldehyde thin films. Materials Science and Engineering C, 2002, 22, 183-186.	7.3	7
142	Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition. Applied Surface Science, 2017, 418, 430-436.	6.1	7
143	Hall effect and deep level transient spectroscopy measurements in indium selenide doped with chlorine. Solar Energy Materials and Solar Cells, 1992, 28, 223-232.	6.2	6
144	Electrical properties of indium selenide single crystals doped with tin. Solar Energy Materials and Solar Cells, 1992, 26, 159-167.	6.2	6

#	Article	IF	CITATIONS
145	Listeria monocytogenes detection with surface plasmon resonance and protein arrays. , 2008, , .		6
146	Protocol of thermal aging against the swelling of poly(dimethylsiloxane) and physical insight in swelling regimes. Polymer, 2018, 139, 145-154.	3.8	6
147	<title>Gold/titania nanocomposites thin films for optical gas sensing devices</title> ., 2005, , .		5
148	Heterogeneous optochemical VOC sensing layers selected by ESI-mass spectrometry. Biosensors and Bioelectronics, 2006, 22, 415-422.	10.1	5
149	<title>Nanoparticle thin films deposited by MAPLE for sensor applications</title> . Proceedings of SPIE, 2008, , .	0.8	5
150	[18F]F-DOPA synthesis by poly(dimethylsiloxane)-based platforms: thermal aging protocol to reduce chemicals-induced damage. Sensors and Actuators B: Chemical, 2018, 254, 143-152.	7.8	5
151	Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications. Chemosensors, 2019, 7, 13.	3.6	5
152	Shape Modulation of Plasmonic Nanostructures by Unconventional Lithographic Technique. Nanomaterials, 2022, 12, 547.	4.1	5
153	Influence of thermal annealing on the optical absorption and dark conductivity of amorphous gallium sulfide thin films. Journal of Applied Physics, 1989, 66, 2114-2117.	2.5	4
154	Thin layer porphyrinogen for alcohol-vapor optical sensors. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1140-1147.	0.8	4
155	Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence. Applied Physics A: Materials Science and Processing, 2011, 105, 605-610.	2.3	4
156	Practical strategy to realistically measure the swelling ratio of poly(dimethylsiloxane) without underestimation due to the solvent volatility. Polymer, 2017, 113, 187-192.	3.8	4
157	Lab-on-a-brane for spheroid formation. Biofabrication, 2019, 11, 021002.	7.1	4
158	Impurity Levels in As-Doped Indium Selenide Single Crystals. Physica Status Solidi A, 1992, 133, 421-428.	1.7	3
159	Deep levels in indium selenide single crystals doped with iodine. Journal of Applied Physics, 1995, 78, 5427-5430.	2.5	3
160	Real-time monitoring ofcarbonariusDNA structured biochip by surface plasmon resonance imaging. Journal of Optics, 2008, 10, 064018.	1.5	3
161	Zinc oxide nanostructured layers for gas sensing applications. Laser Physics, 2011, 21, 588-597.	1.2	3
162	Short-range ordered 2D nanoholes: lattice-model and novel insight into the impact of coordination geometry and packing on their propagating-mode transmittance features. Nanoscale Advances, 2020, 2, 4133-4146.	4.6	3

#	Article	IF	CITATIONS
163	Nano structures and polymers: Emerging nanocomposites for plasmonic resonance transducers. Thin Solid Films, 2020, 698, 137859.	1.8	3
164	Spaceâ€chargeâ€limited currents in amorphous gallium sulfide thin films. Journal of Applied Physics, 1991, 69, 320-323.	2.5	2
165	C-nitroso compounds as novel promising substances for the deposition of Langmuir-Blodgett films. Thin Solid Films, 1996, 284-285, 69-72.	1.8	2
166	Deposition and Characterization of Nitroso-Compound LB Films. Materials Science Forum, 1996, 203, 155-160.	0.3	2
167	Ordered Langmuir-Blodgett multilayers of copper phthalocyanine derivatives. Materials Science and Engineering C, 1998, 5, 243-250.	7.3	2
168	5-Amino-3-imino-1,2,6,7-tetracyano-3H-pyrrolizine: characterization of the solvent-free solid phase and interaction with ammonia and water. Journal of Materials Chemistry, 1998, 8, 1139-1144.	6.7	2
169	Solid-state detection of gases by use of thin films based on pyrazole units, and morphological characterization of the films by AFM. Research on Chemical Intermediates, 2012, 38, 2245-2254.	2.7	2
170	Nanoparticle Langmuir-Blodgett Arrays for Sensing of CO and NO2 Gases. Physics Procedia, 2012, 32, 152-156.	1.2	2
171	Optical and morphological characterization of bispyrazole thin films for gas sensing applications. Arabian Journal of Chemistry, 2014, 7, 695-700.	4.9	2
172	Propagating and Localised Plasmonic and Magneto-Plasmonic Transductors for Gas and Biosensing Applications. , 2015, , .		2
173	3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	2
174	Sol-Gel Synthesis and Gas Sensing Properties of In ₂ 0 ₃ Thin Films. , 2001, , .		2
175	ANALYSIS OF DRY SALAMI BY MEANS OF AN ELECTRONIC NOSE AND CORRELATION WITH MICROBIOLOGICAL AND ANALYTICAL METHODS. , 2002, , .		2
176	OPTICAL SENSING PROPERTIES OF PHTHALOCYANINES THIN FILMS IN ARRAY CONFIGURATION AND THEIR APPLICATION IN VOCS DETECTION. , 2004, , .		2
177	Hall effect and impurity levels in lead doped indium selenide. Journal of Applied Physics, 1994, 75, 3982-3986.	2.5	1
178	Spectroscopic Characterization of a Substituted Phthalocyanine Thin Film Deposited by the Langmuir-Blodgett Technique. Materials Science Forum, 1996, 203, 297-302.	0.3	1
179	Novel nitroso-compounds Langmuir–Blodgett films. Thin Solid Films, 1998, 327-329, 136-140.	1.8	1
180	Integration of SnO 2 sol-gel processes to gas sensor microfabrication: H2 and CO sensitivity		1

evaluation., 1999,,.

#	Article	IF	CITATIONS
181	Spin-coated thin films of different metal phthalocyanines and porphyrin-phthalocyanine blend for optochemical sensors of volatile organic compounds. , 2004, , .		1
182	NO <inf>2</inf> optical sensing in ZnO nanostructures. , 2008, , .		1
183	Nitrogen Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Key Engineering Materials, 2014, 605, 318-321.	0.4	1
184	Sensitivity and long-term stability of γ-Fe <inf>2</inf> 0 <inf>3</inf> and CoFe <inf>2</inf> 0 <inf>4</inf> nanoparticle gas sensors for NO <inf>2</inf> , CO and acetone sensing — A comparative study. , 2014, , .		1
185	Colloidal lithography fabrication of tunable plasmonic nanostructures. , 2015, , .		1
186	Peroxides and Bisphenols Detection in Extra Virgin Olive Oil (EVOO) by Plasmonic Nanodomes Transducers. Chemosensors, 2020, 8, 83.	3.6	1
187	Monolayer colloidal lithography protocol: theoretical assessment and applicative potentialities for metal nanohole fabrication. Applied Surface Science Advances, 2021, 5, 100097.	6.8	1
188	Bis-Pyrazole Based Thin Films for Optical Gas Detection. Lecture Notes in Electrical Engineering, 2011, , 81-86.	0.4	1
189	Magnetoplasmonics. , 2016, , 1879-1903.		1
190	THIN FILMS OF A Cu-PHTHALOCYANINE AS RESISTIVE SENSORS FOR NO2 DETECTION. , 2000, , .		1
191	Deep Levels in Doped Indium Selenide Single Crystals. Materials Science Forum, 1996, 203, 65-70.	0.3	0
192	Physical and structural characterization of NiO thin films for gas detection. , 0, , .		0
193	ANALYSIS OF PEACHES RIPENESS BY AN ELECTRONIC NOSE AND NEAR-INFRARED SPECTROSCOPY. , 2002, , .		Ο
194	Optical sensors based on phthalocyanine thin films. , 2003, , .		0
195	<title>Collodial TiO<formula><inf><roman>2</roman></inf></formula> rod and dot based thin films
for chemical sensors based on surface plasmon resonance</title> . , 2005, 5836, 27.		Ο
196	Optimization of nanostructured metal layers for DNA hybridization monitoring in a SPR-i experiment. , 2009, , .		0
197	Gas sensing properties and electrical resistance of Langmuir-Blodgett iron oxide nanoparticle arrays. , 2012, , .		0
198	FEM Modeling of Nanostructures for Sensor Application. Lecture Notes in Electrical Engineering, 2014, , 287-291.	0.4	0

#	Article	IF	CITATIONS
199	Light trapping systems for biosensor application Forest of silica nanowires decorated with plasmonic nanoparticles. , 2014, , .		0
200	Three-dimensional Plasmonic Materials for Chemical Sensor Application. Lecture Notes in Electrical Engineering, 2015, , 171-175.	0.4	0
201	Magneto-optical localized-SPR a novel sensing platform to characterize new nanostructured materials for sensing. , 2015, , .		0
202	Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers. Proceedings of SPIE, 2015, , .	0.8	0
203	PDMS treated with dichloromethane: swollen weight without underestimation due to the solvent volatility and thermal aging to reduce swelling and morphology damage. , 2017, , .		0
204	Iron Oxides Nanoparticles Langmuir-Schaeffer Multilayers for Chemoresistive Gas Sensing. Lecture Notes in Electrical Engineering, 2018, , 66-72.	0.4	0
205	MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications. Chemosensors, 2021, 9, 272.	3.6	0
206	Analysis of milk ageing by a sol-gel sensors array. , 2000, , .		0
207	MESO-OCTAETHYLPORPHYRINOGEN LB FILM IN MOLECULAR RECOGNITION OF ALCOHOLS VAPOURS BY SURFACE PLASMON RESONANCE. , 2000, , .		0
208	OPTICAL SENSING PROPERTIES OF PHTHALOCYANINE FUNCTIONALISED TITANIA FILMS. , 2000, , .		0
209	PHYSICAL AND GAS SENSING PROPERTIES OF Mo03-W03 NANOSTRUCTURED OXIDES. , 2002, , .		0
210	EMPLOYMENT OF PHTHALOCYANINE LB FILMS IN PIEZOELECTRIC CHEMICAL SENSORS. , 2004, , .		0
211	SURFACE PLASMON RESONANCE IMAGING OF MICROSTRUCTURED OLIGONUCLEOTIDE MONOLAYERS FOR BIOSENSORS APPLICATIONS. , 2004, , .		0
212	INFLUENCE OF ELECTRODES AGING ON THE RESPONSES OF SNO2 SOL-GEL SENSORS. , 2004, , .		0
213	SOL-GEL TIO2 THIN FILM-BASED SENSOR FOR LAMBDA MEASUREMENT. , 2004, , .		0
214	ELECTRONIC NOSE AS USEFUL TOOL COMPLEMENTARY TO CONVENTIONAL TECHNIQUES FOR EVALUATING FOOD QUALITY. , 2004, , .		0
215	SPR-BASED IMMUNOSENSOR FOR THE DIRECT DETECTION OF FRAUDULENT ADULTERATION IN MILK. , 2008, , .		0
216	Physical and Morphological Characterization of an Innovative System Control for the Accurate Execution of Lung Surgery. Lecture Notes in Electrical Engineering, 2011, , 199-202.	0.4	0

#	Article	IF	CITATIONS
217	Opto-Plasmonic Biosensors for Monitoring Wheat End-Products Quality. Lecture Notes in Electrical Engineering, 2018, , 194-199.	0.4	Ο