
Giorgio Volpi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035141/publications.pdf Version: 2024-02-01

GIORCIO VOLRI

#	Article	IF	CITATIONS
1	Fluorescent trifluoromethylated imidazo[1,5-a]pyridines and their application in luminescent down-shifting conversion. Journal of Luminescence, 2022, 242, 118529.	1.5	8
2	A new auspicious scaffold for small dyes and fluorophores. Dyes and Pigments, 2022, 197, 109849.	2.0	1
3	Polymorphism and solid state peculiarities in imidazo[1,5-a]pyridine core deriving compounds: An analysis of energetic and structural driving forces. Journal of Molecular Structure, 2022, 1253, 132175.	1.8	5
4	Luminescent Imidazo[1,5â€ <i>a</i>]pyridine Scaffold: Synthetic Heterocyclization Strategiesâ€Overview and Promising Applications. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	10
5	Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules, 2022, 27, 3856.	1.7	4
6	Characterization of unifloral Italian (Piedmont region) honeys by headspace solid phase microextraction coupled to gas chromatography–mass spectrometry. JSFA Reports, 2022, 2, 341-350.	0.2	2
7	Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 15303-15311.	1.4	11
8	Imidazo[1,5- <i>a</i>]pyridine derivatives: useful, luminescent and versatile scaffolds for different applications. New Journal of Chemistry, 2021, 45, 5737-5743.	1.4	32
9	Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. Chemistry, 2021, 3, 714-727.	0.9	7
10	Strategies to increase the quantum yield: Luminescent methoxylated imidazo[1,5-a]pyridines. Dyes and Pigments, 2021, 192, 109455.	2.0	11
11	Dipyridylmethane Ethers as Ligands for Luminescent Ir Complexes. Molecules, 2021, 26, 7161.	1.7	2
12	Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorganic Chemistry, 2020, 59, 203-213.	1.9	17
13	Quantitative insights on the interaction between metal ions and water kefir grains: kinetics studies and EPR investigations. Natural Product Research, 2020, , 1-5.	1.0	1
14	Blue fluorescent zinc(II) complexes based on tunable imidazo[1,5-a]pyridines. Inorganica Chimica Acta, 2020, 509, 119662.	1.2	27
15	Halogenated imidazo[1,5-a]pyridines: chemical structure and optical properties of a promising luminescent scaffold. Dyes and Pigments, 2019, 171, 107713.	2.0	21
16	Pollution Abatement of Heavy Metals in Different Conditions by Water Kefir Grains as a Protective Tool against Toxicity. Journal of Chemistry, 2019, 2019, 1-10.	0.9	7
17	Synthesis and Crystal Structure of Bis(2-phenylpyridine-C,N')-bis(acetonitrile)iridium(III)hexafluorophosphate Showing Three Anion/Cation Couples in the Asymmetric Unit. Crystals, 2019, 9, 617.	1.0	2
18	Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron, 2018, 140, 129-137.	1.0	39

GIORGIO VOLPI

#	Article	IF	CITATIONS
19	Natural aldehyde extraction and direct preparation of new blue light-emitting imidazo[1,5-a]pyridine fluorophores. Natural Product Research, 2018, 32, 2304-2311.	1.0	7
20	FLUO-SPICES: natural aldehydes extraction and one-pot reaction to prepare and characterize new interesting fluorophores. Education for Chemical Engineers, 2018, 24, 1-6.	2.8	10
21	Novel Ligand and Device Designs for Stable Light-Emitting Electrochemical Cells Based on Heteroleptic Copper(I) Complexes. Inorganic Chemistry, 2018, 57, 10469-10479.	1.9	59
22	New substituted imidazo[1,5-a]pyridine and imidazo[5,1-a]isoquinoline derivatives and their application in fluorescence cell imaging. Dyes and Pigments, 2018, 157, 298-304.	2.0	31
23	EPR and photophysical characterization of six bioactive oxidovanadium(IV) complexes in the conditions of in vitro cell tests. Journal of Inorganic Biochemistry, 2017, 170, 55-62.	1.5	3
24	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5- a]pyridine – Part 2. Dyes and Pigments, 2017, 143, 284-290.	2.0	30
25	One pot synthesis of low cost emitters with large Stokes' shift. Dyes and Pigments, 2017, 137, 152-164.	2.0	50
26	Demonstrating the Presence of Cyanide in Bitter Seeds while Helping Students Visualize Metal–Cyanide Reduction and Formation in a Copper Complex Reaction. Journal of Chemical Education, 2016, 93, 891-897.	1.1	11
27	Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(<scp>i</scp>) complex. Dalton Transactions, 2016, 45, 8984-8993.	1.6	93
28	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5-a]pyridine. Dyes and Pigments, 2016, 128, 96-100.	2.0	37
29	Peptide-based affinity media for solid-phase extraction of Ochratoxin A from wine samples: Effect of the solid support on binding properties. Talanta, 2015, 144, 496-501.	2.9	18
30	Photophysics of Singlet and Triplet Intraligand Excited States in [ReCl(CO) ₃ (1-(2-pyridyl)-imidazo[1,5-î±]pyridine)] Complexes. Journal of the American Chemical Society, 2014, 136, 5963-5973.	6.6	64
31	Dipyridylketone as a versatile ligand precursor for new cationic heteroleptic cyclometalated iridium complexes. Dalton Transactions, 2012, 41, 1065-1073.	1.6	13
32	Exploring synthetic pathways to cationic heteroleptic cyclometalated iridium complexes derived from dipyridylketone. Dalton Transactions, 2012, 41, 7098.	1.6	14
33	Iridium and ruthenium complexes covalently bonded to carbon surfaces by means of electrochemical oxidation of aromatic amines. Catalysis Today, 2010, 158, 22-28.	2.2	20
34	Cationic Heteroleptic Cyclometalated Iridium Complexes with 1â€Pyridylimidazo[1,5â€Î±]pyridine Ligands: Exploitation of an Efficient Intersystem Crossing. Chemistry - A European Journal, 2009, 15, 6415-6427.	1.7	65
35	Spectroscopic and Computational Study on New Blue Emitting ReL(CO) ₃ Cl Complexes Containing Pyridylimidazo[1,5â€ <i>a</i>]pyridine Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 3587-3591.	1.0	60
36	Computational and Spectroscopic Studies of New Rhenium(I) Complexes Containing Pyridylimidazo[1,5- <i>a</i>)pyridine Ligands: Charge Transfer and Dual Emission by Fine-Tuning of Excited States. Organometallics, 2008, 27, 1427-1435.	1.1	131