Gabriel Ozorowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7035098/publications.pdf

Version: 2024-02-01

81 papers 7,598 citations

39 h-index 69250 77 g-index

95 all docs 95 docs citations

95 times ranked 5878 citing authors

#	Article	IF	CITATIONS
1	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
2	Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 2016, 351, 1043-1048.	12.6	402
3	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
4	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
5	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
6	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
7	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	12.6	290
8	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
9	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	3.4	247
10	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
11	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	27.8	217
12	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
13	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
14	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
15	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
16	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	2.0	156
17	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	8.5	151
18	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	3.4	148

#	Article	IF	Citations
19	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
20	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
21	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	4.7	138
22	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	6.4	135
23	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	7.1	127
24	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
25	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	4.7	111
26	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
27	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	4.7	100
28	Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1965-1980.	2.5	95
29	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95
30	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	3.4	88
31	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	12.8	87
32	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	14.3	85
33	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	14.3	81
34	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€1 envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	3.3	75
35	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	10.3	75
36	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	3.4	66

3

#	Article	IF	CITATIONS
37	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
38	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	57
39	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	3.4	57
40	Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Reports, 2018, 24, 3324-3338.e5.	6.4	49
41	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	11.0	42
42	Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. Cell Host and Microbe, 2020, 27, 507-518.	11.0	42
43	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	4.4	41
44	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	3.3	39
45	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	6.4	37
46	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	3.4	34
47	Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers <i>In Vitro</i> . Journal of Virology, 2018, 92, .	3.4	34
48	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
49	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
50	The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization. Cell Reports, 2019, 27, 586-598.e6.	6.4	32
51	N-terminal acetylation of annexin A2 is required for S100A10 binding. Biological Chemistry, 2012, 393, 1141-1150.	2.5	29
52	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	3.4	29
53	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. Journal of Virology, 2017, 91, .	3.4	27
54	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	7.1	27

#	Article	IF	Citations
55	Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nature Communications, 2021, 12, 2633.	12.8	25
56	Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 92-104.	2.5	24
57	Stabilization of a soluble, native-like trimeric form of an efficiently cleaved Indian HIV-1 clade C envelope glycoprotein. Journal of Biological Chemistry, 2017, 292, 8236-8243.	3.4	24
58	Withaferin A binds covalently to the N-terminal domain of annexin A2. Biological Chemistry, 2012, 393, 1151-1163.	2.5	23
59	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	3.7	23
60	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	22
61	Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Frontiers in Immunology, 2017, 8, 1025.	4.8	21
62	A Transporter Converted into a Sensor, a Phototaxis Signaling Mutant of Bacteriorhodopsin at 3.0ÂÃ Journal of Molecular Biology, 2012, 415, 455-463.	4.2	18
63	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
64	From structure to sequence: Antibody discovery using cryoEM. Science Advances, 2022, 8, eabk2039.	10.3	18
65	Apo and Calcium-Bound Crystal Structures of Cytoskeletal Protein Alpha-14 Giardin (Annexin E1) from the Intestinal Protozoan Parasite Giardia lamblia. Journal of Molecular Biology, 2009, 385, 1098-1112.	4.2	17
66	Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. Journal of Pharmaceutical Sciences, 2019, 108, 2264-2277.	3.3	16
67	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	3.4	13
68	Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules, 2015, 5, 2919-2934.	4.0	12
69	Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glycoprotein (Env) highly resistant to CD4-induced conformational changes. Journal of Biological Chemistry, 2017, 292, 15849-15858.	3.4	12
70	Envelope proteins of two HIV-1 clades induced different epitope-specific antibody response. Vaccine, 2018, 36, 1627-1636.	3.8	11
71	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
72	Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor. Molecules, 2019, 24, 1581.	3.8	8

#	Article	IF	CITATIONS
73	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	4.1	6
74	Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies. Cell Reports, 2022, 38, 110436.	6.4	6
7 5	A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket near the Fusion Peptide. Cell Reports, 2020, 33, 108428.	6.4	5
76	Harnessing Activin A Adjuvanticity to Promote Antibody Responses to BG505 HIV Envelope Trimers. Frontiers in Immunology, 2020, 11, 1213.	4.8	4
77	Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer. PLoS Pathogens, 2021, 17, e1008977.	4.7	4
78	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
79	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		O
80	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
81	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		O