Kevin O'Shea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034922/publications.pdf Version: 2024-02-01

KEVIN O'SHEA

#	Article	IF	CITATIONS
1	Elucidation of specific binding sites and extraction of toxic Gen X from HSA employing cyclodextrin. Journal of Hazardous Materials, 2022, 425, 127765.	6.5	8
2	Making waves: Defining advanced reduction technologies from the perspective of water treatment. Water Research, 2022, 212, 118101.	5.3	16
3	UV/Sodium percarbonate for bisphenol A treatment in water: Impact of water quality parameters on the formation of reactive radicals. Water Research, 2022, 219, 118457.	5.3	20
4	Determination and Environmental Implications of Aqueous-Phase Rate Constants in Radical Reactions. Water Research, 2021, 190, 116746.	5.3	65
5	Degradation and transformation of bisphenol A in UV/Sodium percarbonate: Dual role of carbonate radical anion. Water Research, 2020, 171, 115394.	5.3	151
6	Ultrasound-induced remediation of the second-generation antihistamine, Cetirizine. Journal of Environmental Chemical Engineering, 2020, 8, 103680.	3.3	3
7	Investigation of Ultrasonically Induced Degradation of Tris(2-chloroethyl) Phosphate in Water. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	3
8	Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials, 2020, 10, 1604.	1.9	8
9	Selective oxidation of H1-antihistamines by unactivated peroxymonosulfate (PMS): Influence of inorganic anions and organic compounds. Water Research, 2020, 186, 116401.	5.3	29
10	Rapid transformation of H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by direct peroxymonosulfate (PMS) oxidation. Journal of Hazardous Materials, 2020, 398, 123219.	6.5	16
11	Fundamental Studies of the Singlet Oxygen Reactions with the Potent Marine Toxin Domoic Acid. Environmental Science & Technology, 2020, 54, 6073-6081.	4.6	20
12	Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water. Applied Catalysis B: Environmental, 2020, 275, 119098.	10.8	37
13	Hydroxyl Radical Generation and Partitioning in Degradation of Methylene Blue and DEET by Dual-Frequency Ultrasonic Irradiation. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	11
14	UV and Visible Light-Driven Production of Hydroxyl Radicals by Reduced Forms of N, F, and P Codoped Titanium Dioxide. Molecules, 2019, 24, 2147.	1.7	46
15	Enhanced host–guest complexation of short chain perfluoroalkyl substances with positively charged β-cyclodextrin derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95, 111-117.	0.9	15
16	TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 130-137.	2.0	19
17	Analytical methods for assessment of cyanotoxin contamination in drinking water sources. Current Opinion in Environmental Science and Health, 2019, 7, 45-51.	2.1	14
18	Kinetic and Mechanistic Evaluation of Inorganic Arsenic Species Adsorption onto Humic Acid Grafted Magnetite Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 13540-13547.	1.5	54

Kevin O'Shea

#	Article	IF	CITATIONS
19	β-Cyclodextrin Reverses Binding of Perfluorooctanoic Acid to Human Serum Albumin. Chemical Research in Toxicology, 2018, 31, 277-284.	1.7	18
20	Fundamental study of the ultrasonic induced degradation of the popular antihistamine, diphenhydramine (DPH). Water Research, 2018, 144, 265-273.	5.3	15
21	Detailed NMR investigation of cyclodextrin-perfluorinated surfactant interactions in aqueous media. Journal of Hazardous Materials, 2017, 329, 57-65.	6.5	34
22	Oxidative remediation of 4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh). Evidence of contaminant repair reaction pathways. Physical Chemistry Chemical Physics, 2017, 19, 13324-13332.	1.3	1
23	¹⁹ F NMR Characterization of the Encapsulation of Emerging Perfluoroethercarboxylic Acids by Cyclodextrins. Journal of Physical Chemistry B, 2017, 121, 8359-8366.	1.2	27
24	Kinetic, product, and computational studies of the ultrasonic induced degradation of 4-methylcyclohexanemethanol (MCHM). Water Research, 2017, 126, 164-171.	5.3	19
25	Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Research, 2017, 123, 353-360.	5.3	127
26	β-Cyclodextrin Attenuates Perfluorooctanoic Acid Toxicity in the Zebrafish Embryo Model. Toxics, 2017, 5, 31.	1.6	15
27	Irradiation of ultrasound to 5-methylbenzotriazole in aqueous phase: Degradation kinetics and mechanisms. Ultrasonics Sonochemistry, 2016, 31, 227-236.	3.8	15
28	Industrial synthesis and characterization of nanophotocatalysts materials: titania. Nanotechnology Reviews, 2016, 5, 467-479.	2.6	31
29	Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. Journal of Molecular Catalysis A, 2016, 425, 183-189.	4.8	157
30	Ozonation of Cylindrospermopsin (Cyanotoxin): Degradation Mechanisms and Cytotoxicity Assessments. Environmental Science & Technology, 2016, 50, 1437-1446.	4.6	30
31	Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. Environmental Science & Technology, 2016, 50, 2921-2930.	4.6	80
32	Control of Microcystis aeruginosa growth and associated microcystin cyanotoxin remediation by electron beam irradiation (EBI). RSC Advances, 2015, 5, 31292-31297.	1.7	12
33	Destruction of microcystins (cyanotoxins) by UV-254Ânm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms. Water Research, 2015, 74, 227-238.	5.3	88
34	TiO2 photocatalytic degradation and detoxification of cylindrospermopsin. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 115-122.	2.0	53
35	Selective Reduction of Cr(VI) in Chromium, Copper and Arsenic (CCA) Mixed Waste Streams Using UV/TiO2 Photocatalysis. Molecules, 2015, 20, 2622-2635.	1.7	31
36	Identification of TiO2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin. Applied Catalysis B: Environmental, 2015, 163, 591-598.	10.8	40

KEVIN O'SHEA

#	Article	IF	CITATIONS
37	Ultraviolet–Visible Light–Sensitive High Surface Area Phosphorous-Fluorine–Co-Doped TiO ₂ Nanoparticles for the Degradation of Atrazine in Water. Environmental Engineering Science, 2014, 31, 435-446.	0.8	38
38	Revealing the degradation intermediates and pathways of visible light-induced NF-TiO2 photocatalysis of microcystin-LR. Applied Catalysis B: Environmental, 2014, 154-155, 259-266.	10.8	69
39	Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 2014, 144, 614-621.	10.8	197
40	Solar photocatalysis for water disinfection: materials and reactor design. Catalysis Science and Technology, 2014, 4, 1211-1226.	2.1	165
41	Improved charge transport of Nb-doped TiO ₂ nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19616-19622.	5.2	127
42	Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H ₂ O ₂ Process. Environmental Science & Technology, 2014, 48, 4495-4504.	4.6	77
43	New Insights into the Mechanism of Visible Light Photocatalysis. Journal of Physical Chemistry Letters, 2014, 5, 2543-2554.	2.1	569
44	Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Research, 2014, 67, 144-153.	5.3	107
45	Degradation of cylindrospermopsin by using polymorphic titanium dioxide under UV–Vis irradiation. Catalysis Today, 2014, 224, 49-55.	2.2	32
46	Cr(VI) Adsorption and Reduction by Humic Acid Coated on Magnetite. Environmental Science & Technology, 2014, 48, 8078-8085.	4.6	378
47	A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environmental Sciences: Processes and Impacts, 2013, 15, 1979.	1.7	147
48	NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: Emerging synergies, degradation intermediates, and reusable attributes. Journal of Hazardous Materials, 2013, 260, 569-575.	6.5	73
49	Chapter Green Nanotechnology: Development of Nanomaterials for Environmental and Energy Applications. ACS Symposium Series, 2013, , 201-229.	0.5	24
50	Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262, 7-13.	2.0	122
51	Anion-Doped TiO ₂ Nanocatalysts for Water Purification under Visible Light. Industrial & Engineering Chemistry Research, 2013, 52, 13957-13964.	1.8	79
52	Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Applied Catalysis B: Environmental, 2013, 134-135, 83-92.	10.8	214
53	Advanced Oxidation Processes for Water Treatment. Journal of Physical Chemistry Letters, 2012, 3, 2112-2113.	2.1	148
54	A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125, 331-349.	10.8	3,320

Kevin O'Shea

#	Article	IF	CITATIONS
55	A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity. Applied Catalysis B: Environmental, 2012, 121-122, 30-39.	10.8	81
56	Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: Effect of argon vs. oxygen saturated solutions. Ultrasonics Sonochemistry, 2012, 19, 959-968.	3.8	24
57	Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Research, 2011, 45, 3787-3796.	5.3	131
58	Innovative visible light-activated sulfur doped TiO2 films for water treatment. Applied Catalysis B: Environmental, 2011, 107, 77-87.	10.8	338
59	TiO2 photocatalytic degradation of phenylarsonic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 61-68.	2.0	95
60	Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LRâ~†. Applied Catalysis B: Environmental, 2010, 99, 378-387.	10.8	168
61	Free Radical Mechanisms for the Treatment of Methyl tert-Butyl Ether (MTBE) via Advanced Oxidation/Reductive Processes in Aqueous Solutions. Chemical Reviews, 2009, 109, 1302-1345.	23.0	90
62	Reactions of urocanic acid (UCA) methyl esters with singlet oxygen and 4-methyl-1,2,4-triazoline-3,5-dione (MTAD). Tetrahedron, 2006, 62, 10700-10708.	1.0	13
63	Iron(II)-catalyzed enhancement of ultrasonic-induced degradation of diethylstilbestrol (DES). Catalysis Today, 2005, 101, 369-373.	2.2	20
64	Degradation of MTBE and Related Gasoline Oxygenates in Aqueous Media by Ultrasound Irradiation. Journal of Environmental Engineering, ASCE, 2002, 128, 806-812.	0.7	14
65	The degradation of MTBE–BTEX mixtures by gamma radiolysis. A kinetic modeling study. Radiation Physics and Chemistry, 2002, 65, 343-347.	1.4	24
66	Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways. Radiation Physics and Chemistry, 2002, 65, 335-341.	1.4	31
67	Reaction pathways and kinetic parameters of sonolytically induced oxidation of dimethyl methylphosphonate in air saturated aqueous solutions. Research on Chemical Intermediates, 1998, 24, 695-705.	1.3	11
68	The Elimination of Methane Phosphonic Acid, Dimethyl Ester (DMMP) from Aqueous Solution Using 60Co-y and Electron Beam Induced Radiolysis: A Model Compound for Evaluating the Effectiveness of the Î-Beam Process in the Destruction of Organophosphorus Chemical Warfare Agents. Journal of Advanced Oxidation Technologies, 1998, 3, .	0.5	0