List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 1995, 18, 193-222.	10.7	7,228
2	Visual search and stimulus similarity Psychological Review, 1989, 96, 433-458.	3.8	3,306
3	Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 2000, 23, 475-483.	8.6	2,158
4	Selective attention and the organization of visual information Journal of Experimental Psychology: General, 1984, 113, 501-517.	2.1	1,702
5	The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 2010, 14, 172-179.	7.8	1,505
6	A neural basis for visual search in inferior temporal cortex. Nature, 1993, 363, 345-347.	27.8	1,257
7	The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage, 2010, 50, 1313-1319.	4.2	1,064
8	A Neural Basis for General Intelligence. Science, 2000, 289, 457-460.	12.6	982
9	Intelligence and the Frontal Lobe: The Organization of Goal-Directed Behavior. Cognitive Psychology, 1996, 30, 257-303.	2.2	946
10	An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2001, 2, 820-829.	10.2	876
11	The locus of interference in the perception of simultaneous stimuli Psychological Review, 1980, 87, 272-300.	3.8	853
12	Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16616-16621.	7.1	762
13	Direct measurement of attentional dwell time in human vision. Nature, 1994, 369, 313-315.	27.8	658
14	Responses of Neurons in Inferior Temporal Cortex During Memory-Guided Visual Search. Journal of Neurophysiology, 1998, 80, 2918-2940.	1.8	630
15	Dynamic Coding for Cognitive Control in Prefrontal Cortex. Neuron, 2013, 78, 364-375.	8.1	598
16	Fluid intelligence after frontal lobe lesions. Neuropsychologia, 1995, 33, 261-268.	1.6	562
17	Competitive brain activity in visual attention. Current Opinion in Neurobiology, 1997, 7, 255-261.	4.2	470
18	The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 2014, 14, 204.	1.8	430

#	Article	IF	CITATIONS
19	Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 1986, 3, 271-290.	1.1	394
20	The Structure of Cognition: Attentional Episodes in Mind and Brain. Neuron, 2013, 80, 35-50.	8.1	393
21	Language-Selective and Domain-General Regions Lie Side by Side within Broca's Area. Current Biology, 2012, 22, 2059-2062.	3.9	373
22	Restricted attentional capacity within but not between sensory modalities. Nature, 1997, 387, 808-810.	27.8	367
23	Encoding Strategies Dissociate Prefrontal Activity from Working Memory Demand. Neuron, 2003, 37, 361-367.	8.1	320
24	EPS Mid-Career Award 2004: Brain mechanisms of attention. Quarterly Journal of Experimental Psychology, 2006, 59, 2-27.	1.1	300
25	The Slow Time-Course of Visual Attention. Cognitive Psychology, 1996, 30, 79-109.	2.2	292
26	Top-Down Activation of Shape-Specific Population Codes in Visual Cortex during Mental Imagery. Journal of Neuroscience, 2009, 29, 1565-1572.	3.6	282
27	Executive function and fluid intelligence after frontal lobe lesions. Brain, 2010, 133, 234-247.	7.6	254
28	Systematic analysis of deficits in visual attention Journal of Experimental Psychology: General, 1999, 128, 450-478.	2.1	239
29	A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cerebral Cortex, 2020, 30, 4361-4380.	2.9	197
30	Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 2002, 5, 671-676.	14.8	196
31	Adaptive Coding of Task-Relevant Information in Human Frontoparietal Cortex. Journal of Neuroscience, 2011, 31, 14592-14599.	3.6	189
32	Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14899-14902.	7.1	183
33	Attentional Functions of Parietal and Frontal Cortex. Cerebral Cortex, 2005, 15, 1469-1484.	2.9	177
34	Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19569-19574.	7.1	166
35	Recruitment of the default mode network during a demanding act of executive control. ELife, 2015, 4, e06481.	6.0	140
36	Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. NeuroImage, 2011, 56, 744-752.	4.2	139

#	Article	IF	CITATIONS
37	Goal neglect and Spearman's g: Competing parts of a complex task Journal of Experimental Psychology: General, 2008, 137, 131-148.	2.1	134
38	Hierarchical coding for sequential task events in the monkey prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11969-11974.	7.1	123
39	The role of Area 10 (BA10) in human multitasking and in social cognition: A lesion study. Neuropsychologia, 2011, 49, 3525-3531.	1.6	121
40	Task Difficulty Manipulation Reveals Multiple Demand Activity but no Frontal Lobe Hierarchy. Cerebral Cortex, 2014, 24, 532-540.	2.9	119
41	Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction. Journal of Neuroscience, 2016, 36, 6147-6155.	3.6	118
42	Fluid intelligence is supported by the multiple-demand system not the language system. Nature Human Behaviour, 2018, 2, 200-204.	12.0	114
43	Role of the Default Mode Network in Cognitive Transitions. Cerebral Cortex, 2018, 28, 3685-3696.	2.9	110
44	Selective tuning of the right inferior frontal gyrus during target detection. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 103-112.	2.0	102
45	Inhibition processes are dissociable and lateralized in human prefrontal cortex. Neuropsychologia, 2016, 93, 1-12.	1.6	90
46	Similarity between concurrent visual discriminations: Dimensions and objects. Perception & Psychophysics, 1993, 54, 425-430.	2.3	86
47	Integrated Intelligence from Distributed Brain Activity. Trends in Cognitive Sciences, 2020, 24, 838-852.	7.8	84
48	Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning. Cerebral Cortex, 2011, 21, 1-10.	2.9	80
49	Task rules, working memory, and fluid intelligence. Psychonomic Bulletin and Review, 2012, 19, 864-870.	2.8	79
50	Assembly and Use of New Task Rules in Fronto-parietal Cortex. Journal of Cognitive Neuroscience, 2011, 23, 168-182.	2.3	75
51	Idiosyncratic responding during movie-watching predicted by age differences in attentional control. Neurobiology of Aging, 2015, 36, 3045-3055.	3.1	74
52	Frontoparietal Activity with Minimal Decision and Control. Journal of Neuroscience, 2006, 26, 9805-9809.	3.6	72
53	COMT val158met Genotype Affects Recruitment of Neural Mechanisms Supporting Fluid Intelligence. Cerebral Cortex, 2008, 18, 2132-2140.	2.9	72
54	Discrimination of Visual Categories Based on Behavioral Relevance in Widespread Regions of Frontoparietal Cortex. Journal of Neuroscience, 2015, 35, 12383-12393.	3.6	72

#	Article	IF	CITATIONS
55	Selective Tuning of the Blood Oxygenation Level-Dependent Response during Simple Target Detection Dissociates Human Frontoparietal Subregions. Journal of Neuroscience, 2007, 27, 6219-6223.	3.6	71
56	Coding of Visual, Auditory, Rule, and Response Information in the Brain: 10 Years of Multivoxel Pattern Analysis. Journal of Cognitive Neuroscience, 2016, 28, 1433-1454.	2.3	71
57	Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention. Trends in Cognitive Sciences, 2018, 22, 422-437.	7.8	68
58	Separate and Shared Sources of Dual-Task Cost in Stimulus Identification and Response Selection. Cognitive Psychology, 2002, 44, 105-147.	2.2	67
59	Frontal Lobe Function and General Intelligence: Why it Matters. Cortex, 2005, 41, 215-217.	2.4	67
60	Objects and attributes in divided attention: Surface and boundary systems. Perception & Psychophysics, 1996, 58, 1076-1084.	2.3	65
61	Complexity and compositionality in fluid intelligence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5295-5299.	7.1	62
62	Progressive Recruitment of the Frontoparietal Multiple-demand System with Increased Task Complexity, Time Pressure, and Reward. Journal of Cognitive Neuroscience, 2019, 31, 1617-1630.	2.3	58
63	Neural Coding for Instruction-Based Task Sets in Human Frontoparietal and Visual Cortex. Cerebral Cortex, 2017, 27, bhw032.	2.9	57
64	Systematic analysis of deficits in visual attention Journal of Experimental Psychology: General, 1999, 128, 450-478.	2.1	55
65	Goal neglect and knowledge chunking in the construction of novel behaviour. Cognition, 2014, 130, 11-30.	2.2	54
66	Intelligence and executive functions in frontotemporal dementia. Neuropsychologia, 2013, 51, 725-730.	1.6	51
67	Selective representation of task-relevant objects and locations in the monkey prefrontal cortex. European Journal of Neuroscience, 2006, 23, 2197-2214.	2.6	46
68	Discrete Object Representation, Attention Switching, and Task Difficulty in the Parietal Lobe. Journal of Cognitive Neuroscience, 2010, 22, 32-47.	2.3	46
69	Dynamic Construction of a Coherent Attentional State in a Prefrontal Cell Population. Neuron, 2013, 80, 235-246.	8.1	46
70	Hierarchical Organization of Cognition Reflected in Distributed Frontoparietal Activity. Journal of Neuroscience, 2012, 32, 17373-17381.	3.6	45
71	The Functional Convergence and Heterogeneity of Social, Episodic, and Self-Referential Thought in the Default Mode Network. Cerebral Cortex, 2020, 30, 5915-5929.	2.9	45
72	Within-modality and cross-modality attentional blinks in a simple discrimination task. Perception & Psychophysics, 2006, 68, 54-61.	2.3	44

#	Article	IF	CITATIONS
73	Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network. Journal of Neuroscience, 2017, 37, 4841-4847.	3.6	42
74	A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 2016, 36, 8574-8585.	3.6	41
75	Goal weighting and the choice of behaviour in a complex world. Ergonomics, 1990, 33, 1265-1279.	2.1	39
76	A General Factor Involved in Dual-task Performance Decrement. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1996, 49, 525-545.	2.3	39
77	Absence of Face-specific Cortical Activity in the Complete Absence of Awareness: Converging Evidence from Functional Magnetic Resonance Imaging and Event-related Potentials. Journal of Cognitive Neuroscience, 2012, 24, 396-415.	2.3	39
78	A General Factor Involved in Dual task Performance Decrement. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1996, 49, 525-545.	2.3	38
79	Intelligence tests predict brain response to demanding task events. Nature Neuroscience, 2003, 6, 207-208.	14.8	34
80	Hierarchical Representation of Multistep Tasks in Multiple-Demand and Default Mode Networks. Journal of Neuroscience, 2020, 40, 7724-7738.	3.6	33
81	The Target Selective Neural Response — Similarity, Ambiguity, and Learning Effects. PLoS ONE, 2008, 3, e2520.	2.5	31
82	The relationship between executive functions and fluid intelligence in schizophrenia. Frontiers in Behavioral Neuroscience, 2014, 8, 46.	2.0	30
83	Spatial and temporal distribution of visual information coding in lateral prefrontal cortex. European Journal of Neuroscience, 2015, 41, 89-96.	2.6	30
84	Detection of Fixed and Variable Targets in the Monkey Prefrontal Cortex. Cerebral Cortex, 2009, 19, 2522-2534.	2.9	27
85	Evidence for long-range feedback in target detection: Detection of semantic targets modulates activity in early visual areas. Neuropsychologia, 2009, 47, 1721-1727.	1.6	26
86	Target Detection by Opponent Coding in Monkey Prefrontal Cortex. Journal of Cognitive Neuroscience, 2010, 22, 751-760.	2.3	26
87	Global Increase in Task-related Fronto-parietal Activity after Focal Frontal Lobe Lesion. Journal of Cognitive Neuroscience, 2013, 25, 1542-1552.	2.3	25
88	Precise Topology of Adjacent Domain-General and Sensory-Biased Regions in the Human Brain. Cerebral Cortex, 2022, 32, 2521-2537.	2.9	23
89	Restricted Attentional Capacity within but Not between Sensory Modalities: An Individual Differences Approach. PLoS ONE, 2010, 5, e15280.	2.5	22
90	Attentional modulation of stimulus representation in human fronto-parietal cortex. NeuroImage, 2009, 48, 436-448.	4.2	19

#	Article	IF	CITATIONS
91	Response of the multiple-demand network during simple stimulus discriminations. NeuroImage, 2018, 177, 79-87.	4.2	19
92	Dissociable effects of attention vs working memory training on cognitive performance and everyday functioning following fronto-parietal strokes. Neuropsychological Rehabilitation, 2020, 30, 1092-1114.	1.6	19
93	Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochirurgica, 2021, 163, 1299-1309.	1.7	18
94	Roles of the Default Mode and Multiple-Demand Networks in Naturalistic versus Symbolic Decisions. Journal of Neuroscience, 2021, 41, 2214-2228.	3.6	17
95	Frontoparietal activity with minimal decision and control in the awake macaque at 7 T. Magnetic Resonance Imaging, 2010, 28, 1120-1128.	1.8	14
96	The time-course of component processes of selective attention. NeuroImage, 2019, 199, 396-407.	4.2	14
97	Viewing Ambiguous Social Interactions Increases Functional Connectivity between Frontal and Temporal Nodes of the Social Brain. Journal of Neuroscience, 2021, 41, 6070-6086.	3.6	14
98	Causal Evidence for the Multiple Demand Network in Change Detection: Auditory Mismatch Magnetoencephalography across Focal Neurodegenerative Diseases. Journal of Neuroscience, 2022, 42, 3197-3215.	3.6	14
99	Functional reorganisation and recovery following cortical lesions: A preliminary study in macaque monkeys. Neuropsychologia, 2018, 119, 382-391.	1.6	11
100	Focused Representation of Successive Task Episodes in Frontal and Parietal Cortex. Cerebral Cortex, 2020, 30, 1779-1796.	2.9	11
101	Prefrontal cortex and Spearman's g. , 2005, , 249-272.		11
102	The relationship between executive functions and fluid intelligence in multiple sclerosis. PLoS ONE, 2020, 15, e0231868.	2.5	10
103	Concurrent brain responses to separate auditory and visual targets. Journal of Neurophysiology, 2015, 114, 1239-1247.	1.8	9
104	Strategy and suppression impairments after right lateral prefrontal and orbito-frontal lesions. Brain, 2016, 139, e10-e10.	7.6	8
105	The relationship between executive functions and fluid intelligence in euthymic Bipolar Disorder patients. Psychiatry Research, 2017, 257, 346-351.	3.3	7
106	The effect of rule retrieval on activity in the default mode network. NeuroImage, 2019, 202, 116088.	4.2	7
107	Fluid intelligence and naturalistic task impairments after focal brain lesions. Cortex, 2022, 146, 106-115.	2.4	6
108	Integrated neural dynamics for behavioural decisions and attentional competition in the prefrontal cortex. European Journal of Neuroscience, 2022, 56, 4393-4410.	2.6	6

#	Article	IF	CITATIONS
109	A One-Shot Shift from Explore to Exploit in Monkey Prefrontal Cortex. Journal of Neuroscience, 2022, 42, 276-287.	3.6	5
110	Distinguishing between parallel and serial processing in visual attention from neurobiological data. Royal Society Open Science, 2020, 7, 191553.	2.4	3
111	Training refines brain representations for multitasking. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14127-14128.	7.1	2
112	Rule reactivation and capture errors in goal directed behaviour. Cortex, 2018, 107, 180-187.	2.4	2
113	Cognitive segmentation and fluid reasoning in childhood. Quarterly Journal of Experimental Psychology, 2023, 76, 1431-1444.	1.1	2
114	Externally-Focused Task Switch Activity in the 'Internally-Directed' Default Mode Network. SSRN Electronic Journal, 0, , .	0.4	0
115	The relationship between executive functions and fluid intelligence in multiple sclerosis. , 2020, 15, e0231868.		0
116	The relationship between executive functions and fluid intelligence in multiple sclerosis. , 2020, 15, e0231868.		0
117	The relationship between executive functions and fluid intelligence in multiple sclerosis. , 2020, 15, e0231868.		0
118	The relationship between executive functions and fluid intelligence in multiple sclerosis. , 2020, 15, e0231868.		0