Antonia R Agarrabeitia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circularly Polarized Luminescence from Simple Organic Molecules. Chemistry - A European Journal, 2015, 21, 13488-13500.	3.3	773
2	Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral <i>O-</i> BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores. Journal of the American Chemical Society, 2014, 136, 3346-3349.	13.7	325
3	Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron, 2012, 68, 1153-1162.	1.9	117
4	Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. European Journal of Organic Chemistry, 2012, 2012, 6335-6350.	2.4	92
5	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	2.5	92
6	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	3.3	87
7	Red-edge-wavelength finely-tunable laser action from new BODIPY dyes. Physical Chemistry Chemical Physics, 2010, 12, 7804.	2.8	72
8	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> â€indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin Fi Solidâ€State Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilm3s3 and	62
9	Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	3.3	58
10	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	14.9	56
11	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	2.8	56
12	8-Functionalization of Alkyl-Substituted-3,8-Dimethyl BODIPYs by Knoevenagel Condensation. Organic Letters, 2013, 15, 4454-4457.	4.6	42
13	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	4.1	42
14	Singlet Fission Mediated Photophysics of BODIPY Dimers. Journal of Physical Chemistry Letters, 2018, 9, 641-646.	4.6	42
15	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	3.3	38
16	Exploring the Application of the Negishi Reaction of HaloBODIPYs: Generality, Regioselectivity, and Synthetic Utility in the Development of BODIPY Laser Dyes. Journal of Organic Chemistry, 2016, 81, 3700-3710.	3.2	38
17	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	3.3	38
18	BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chemical Communications, 2020, 56, 940-943.	4.1	38

#	Article	IF	CITATIONS
19	Nitro and amino BODIPYS: crucial substituents to modulate their photonic behavior. RSC Advances, 2013, 3, 1547-1556.	3.6	37
20	Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives. RSC Advances, 2014, 4, 19210-19213.	3.6	32
21	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i> Derivatives. Organic Letters, 2014, 16, 4364-4367.	4.6	32
22	Towards improved halogenated BODIPY photosensitizers: clues on structural designs and heavy atom substitution patterns. Physical Chemistry Chemical Physics, 2017, 19, 69-72.	2.8	31
23	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	4.1	30
24	A new photochemical synthesis of cyclopropanecarboxylic acids present in pyrethroids by the aza-di-i€-methane rearrangement. Tetrahedron, 1995, 51, 9223-9240.	1.9	29
25	Sml ₂ -Mediated 3- <i>exo-trig</i> Cyclization of β,γ-Unsaturated Carbonyl Compounds: Diastereoselective Synthesis of Cyclopropanols. Organic Letters, 2010, 12, 4082-4085.	4.6	29
26	Unexpected Oxadi-ï€-methane Rearrangement of î²,î³-Unsaturated Aldehydes. Journal of Organic Chemistry, 1996, 61, 1459-1466.	3.2	23
27	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	4.1	23
28	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	3.3	23
29	A Novel Photochemical Vinylcyclopropane Rearrangement Yielding 6,7-Dihydro-5H-benzocycloheptene Derivatives. Organic Letters, 2000, 2, 183-186.	4.6	18
30	Novel Photoreactions of 2-Aza-1,4-dienes in the Triplet Excited State and via Radical-Cation Intermediates. 2-Aza-di-ï€-methane Rearrangements Yielding Cyclopropylimines andN-Vinylaziridines. Journal of Organic Chemistry, 2003, 68, 6661-6671.	3.2	17
31	Steric and electronic effects on the photochemical reactivity of oxime acetates of β,γ-unsaturated aldehydes. Journal of the Chemical Society Perkin Transactions 1, 1992, , 163-169.	0.9	15
32	Influence of Electron-Donor Sensitizers on SET-Promoted Photochemical Reactions of β,γ-Unsaturated Aldehydes. Organic Letters, 2004, 6, 2261-2264.	4.6	15
33	Novel Oxa-di-ï€-methane and Norrish Type I Reactions in the S2(ï€,ï€*) Excited State of a Series of β,γ-Unsaturated Ketones. Organic Letters, 2005, 7, 2687-2690.	4.6	15
34	The Effects of Triplet Sensitizers' Energies on the Photoreactivity of β,γ-Unsaturated Methyl Ketones. Angewandte Chemie - International Edition, 2005, 44, 7739-7741.	13.8	14
35	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	3.7	14
36	Photochemical Vinylcyclopropane Rearrangements of 1-Substituted-3-(2,2-diphenylvinyl)-2,2- dimethylcyclopropanes to Cyclopentenes and Different Heterocycles. Journal of Organic Chemistry, 1999, 64, 1056-1060.	3.2	13

#	Article	IF	CITATIONS
37	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	3.7	12
38	Di-Ï€-methane Reactions Promoted by SET from Electron-Donor Sensitizers. Journal of the American Chemical Society, 2001, 123, 9920-9921.	13.7	11
39	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	3.0	11
40	Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis. Organic Letters, 2022, 24, 3636-3641.	4.6	11
41	Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Physical Chemistry Chemical Physics, 2022, 24, 5929-5938.	2.8	10
42	The novel 1-aza-di-ï€-methane rearrangement of 1-substituted-1-aza-1,4-dienes promoted by DCA-sensitization. Tetrahedron Letters, 1999, 40, 1759-1762.	1.4	9
43	Increased laser action in commercial dyes from fluorination regardless of their skeleton. Laser Physics Letters, 2014, 11, 115818.	1.4	9
44	Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids. RSC Advances, 2015, 5, 68676-68680.	3.6	9
45	Unexpected influence of mono-phenyl substitution on the photochemistry of β,γ-unsaturated oxime acetates. Journal of the Chemical Society Chemical Communications, 1990, , 934-936.	2.0	8
46	Photochemical Reactivity of 1-Substituted-1-aza-1,4-dienes Promoted by Electron-Acceptor Sensitizers. Di-Ï€-methane Rearrangements and Alternative Reactions via Radical-Cation Intermediates. Journal of Organic Chemistry, 2002, 67, 9397-9405.	3.2	8
47	Efficient photochemical synthesis of 2-vinylcyclopropanecarbaldehydes, precursors of cyclopropane components present in pyrethroids, by using the oxa-di-Ï€-methane rearrangement. Tetrahedron, 2010, 66, 8690-8697.	1.9	8
48	Red/NIR Thermally Activated Delayed Fluorescence from Azaâ€BODIPYs. Chemistry - A European Journal, 2020, 26, 16080-16088.	3.3	7
49	Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. International Journal of Molecular Sciences, 2021, 22, 6618.	4.1	7
50	Remarkable Observations on Triplet-Sensitized Reactions. The Di-ï€-methane Rearrangement of Acyclic 1,4-Dienes in the Triplet Excited State. Organic Letters, 2009, 11, 4148-4151.	4.6	6
51	Red haloBODIPYs as theragnostic agents: The role of the substitution at meso position. Dyes and Pigments, 2022, 198, 110015.	3.7	5
52	A Palette of Efficient and Stable Far-Red and NIR Dye Lasers. Applied Sciences (Switzerland), 2020, 10, 6206.	2.5	4
53	Synthesis of benzothiophenes in gas phase from aromatic hydrocarbons and carbon disulfide. Reaction Kinetics and Catalysis Letters, 1986, 30, 157-163.	0.6	3
54	From photosensitizers to light harvesters adapting the molecular structure in all-BODIPY assemblies. Physical Chemistry Chemical Physics, 2021, 23, 11191-11195.	2.8	3

#	Article	IF	CITATIONS
55	Unexpected photochemical reactivity of 3-(9-fluorenylidene)-2,2-dimethylpropenal oxime acetate. Journal of Molecular Structure, 2003, 648, 19-25.	3.6	2
56	C*-BODIPYs: Exploring a New Strategy to Transfer Chirality towards BODIPY Chiroptics. Proceedings (mdpi), 2019, 41, .	0.2	2
57	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. Chemistry Proceedings, 2021, 3, .	0.1	2
58	Exploring New Mitochondria-Targetable Theragnostic styrylBODIPYs. , 2021, 8, .		1
59	Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. , 2021, 3, .		0
60	Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. , 2021, 8, .		0