Patrik Schmutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating the Rateâ€Limiting Processes in Highâ€Temperature Sodiumâ€Metal Chloride Batteries. Advanced Science, 2022, 9, e2201019.	11.2	8
2	Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture design. Npj Materials Degradation, 2022, 6, .	5.8	4
3	A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation. Acta Materialia, 2020, 186, 95-104.	7.9	12
4	Enhancing the insulating and dielectric properties of barrier anodic Al2O3 on high purity aluminum. Applied Surface Science, 2020, 505, 144522.	6.1	6
5	Electrophoretic Deposition of Nanoporous Oxide Coatings from Concentrated CuO Nanoparticle Dispersions. Langmuir, 2020, 36, 8075-8085.	3.5	11
6	Concepts for chemical state analysis at constant probing depth by labâ€based XPS/HAXPES combining soft and hard Xâ€ray sources. Surface and Interface Analysis, 2020, 52, 802-810.	1.8	28
7	High-resolution neutron imaging: a new approach to characterize water in anodic aluminum oxides. Materials Today Advances, 2020, 8, 100121.	5.2	0
8	A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces. Surface and Coatings Technology, 2019, 375, 402-413.	4.8	12
9	Biocorrosion Zoomed In: Evidence for Dealloying of Nanometric Intermetallic Particles in Magnesium Alloys. Advanced Materials, 2019, 31, e1903080.	21.0	29
10	Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 2019, 9, 11758.	3.3	76
11	The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Acta Biomaterialia, 2019, 100, 398-414.	8.3	63
12	Study of the hydrogen uptake in deformed steel using the microcapillary cell technique. Corrosion Science, 2019, 155, 55-66.	6.6	16
13	Silicon Corrosion in Neutral Media: The Influence of Confined Geometries and Crevice Corrosion in Simulated Physiological Solutions. Journal of the Electrochemical Society, 2019, 166, C125-C133.	2.9	6
14	Anodizing of Self-Passivating W _{<i>x</i>} Ti _{1–<i>x</i>} Precursors for W _{<i>x</i>} Ti _{1–<i>x</i>} O _{<i>x</i>} Oxide Alloys with Tailored Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 9510-9518.	8.0	8
15	Substrate Purity Effect on the Defect Formation and Properties of Amorphous Anodic Barrier Al ₂ O ₃ . Journal of the Electrochemical Society, 2018, 165, C422-C431.	2.9	7
16	Electronic and structural characterization of barrier-type amorphous aluminium oxide. Electrochimica Acta, 2017, 224, 503-516.	5.2	24
17	Differential apoptotic response of MC3T3-E1 pre-osteoblasts to biodegradable magnesium alloys in an in vitro direct culture model. Journal of Materials Science: Materials in Medicine, 2017, 28, 155.	3.6	5
18	The role of Si incorporation on the anodic growth of barrier-type Al oxide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 120-131.	3.5	9

PATRIK SCHMUTZ

#	Article	IF	CITATIONS
19	Adsorption of oriented carborane dipoles on a silver surface. Physica Status Solidi (B): Basic Research, 2016, 253, 591-600.	1.5	12
20	Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomaterialia, 2015, 23, 347-353.	8.3	67
21	Passivation/precipitation mechanisms of Al-Cr-Fe Complex Metallic Alloys in acidic chloride containing electrolyte. Electrochimica Acta, 2015, 179, 411-422.	5.2	2
22	Phase formation, stability, and oxidation in (Ti, Zr, Hf)NiSn halfâ€Heusler compounds. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1259-1266.	1.8	28
23	Effects of size reduction on the structure and magnetic properties of core–shell Ni3Si/silica nanoparticles prepared by electrochemical synthesis. Journal of Alloys and Compounds, 2014, 584, 119-127.	5.5	14
24	Passive oxide film characterisation on Al-Cr-Fe and Al-Cu-Fe-Cr complex metallic alloys in neutral to alkaline electrolytes by photo- and electrochemical methods. Electrochimica Acta, 2014, 139, 289-301.	5.2	11
25	Flow microcapillary plasma mass spectrometry-based investigation of new Al–Cr–Fe complex metallic alloy passivation. Talanta, 2014, 120, 230-238.	5.5	15
26	Hard X-ray Photoelectron Spectroscopy (HAXPES) characterisation of electrochemical passivation oxide layers on Al–Cr–Fe complex metallic alloys (CMAs). Electrochemistry Communications, 2014, 46, 13-17.	4.7	16
27	Real space crystallography of a complex metallic alloy: high-angle annular dark-field scanning transmission electron microscopy of o-Al ₄ (Cr,Fe). Journal of Applied Crystallography, 2014, 47, 1026-1031.	4.5	5
28	Modelling the early stage time dependence of localised corrosion in aluminium alloys. Electrochimica Acta, 2013, 88, 821-831.	5.2	49
29	Local, element-specific and time-resolved dissolution processes on a Mg–Y–RE alloy – Influence of inorganic species and buffering systems. Corrosion Science, 2013, 75, 201-211.	6.6	13
30	STM and XPS investigation of the oxidation of the Al4(Cr,Fe) quasicrystal approximant. Applied Surface Science, 2013, 283, 276-282.	6.1	19
31	Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corrosion Science, 2012, 55, 313-325.	6.6	72
32	Passivation of Al–Cr–Fe and Al–Cu–Fe–Cr complex metallic alloys in 1M H2SO4 and 1M NaOH solutions. Corrosion Science, 2011, 53, 1825-1837.	6.6	42
33	Fluorhydroxyapatite Coatings Obtained by Flame-Spraying Deposition. International Journal of Applied Ceramic Technology, 2011, 8, 566-571.	2.1	5
34	Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 536-545.	2.9	15
35	Passivation and localised corrosion susceptibility of new Al–Cr–Fe complex metallic alloys in acidic NaCl electrolytes. Electrochimica Acta, 2011, 56, 10524-10532.	5.2	24
36	The influence of heat treatment and plastic deformation on the bioâ€degradation of a Mg‥â€RE alloy. Journal of Biomedical Materials Research - Part A, 2010, 92A, 409-418.	4.0	17

ΡΑΤΓΙΚ SCHMUTZ

#	Article	IF	CITATIONS
37	Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2. Corrosion Science, 2010, 52, 562-578.	6.6	78
38	The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corrosion Science, 2010, 52, 3687-3701.	6.6	299
39	In Situ Microtomographically Monitored and Electrochemically Controlled Corrosion Initiation and Propagation in AlMgSi Alloy AA6016. Journal of the Electrochemical Society, 2009, 156, C1.	2.9	18
40	Modelling of anodic dissolution of pure aluminium in sodium chloride. Electrochimica Acta, 2009, 54, 4514-4524.	5.2	108
41	Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corrosion Science, 2009, 51, 602-619.	6.6	296
42	A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science, 2009, 51, 1115-1127.	6.6	234
43	An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corrosion Science, 2009, 51, 1277-1292.	6.6	238
44	ToF-SIMS depth profile of the surface film on pure magnesium formed by immersion in pure water and the identification of magnesium hydride. Corrosion Science, 2009, 51, 1883-1886.	6.6	66
45	Online hyphenation of potentiostat to a microflow-capillary FI-ICP-MS for simultaneous in situ electrochemical, time and element resolved characterization of local corrosion processes—an application for Zr-bulk metallic glass. Journal of Analytical Atomic Spectrometry, 2009, 24, 1161.	3.0	12
46	Electrochemically Controlled Corrosion Initiation and Propagation in AlMgSi alloys In-situ Monitored Using X-ray Microtomography. ECS Transactions, 2008, 11, 23-38.	0.5	1
47	Corrosion behaviour of an Mg–Y–RE alloy used in biomedical applications studied by electrochemical techniques. Comptes Rendus Chimie, 2008, 11, 1043-1054.	0.5	63
48	Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys. Jom, 2008, 60, 39-44.	1.9	78
49	The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochimica Acta, 2008, 54, 844-855.	5.2	162
50	Investigation of the exfoliation-like attack mechanism in relation to Al–Mg–Si alloy microstructure. Corrosion Science, 2008, 50, 2085-2093.	6.6	31
51	In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography. Corrosion Science, 2008, 50, 3455-3466.	6.6	42
52	ICP-MS, SKPFM, XPS, and Microcapillary Investigation of the Local Corrosion Mechanisms of WC–Co Hardmetal. Journal of the Electrochemical Society, 2008, 155, C415.	2.9	51
53	A Microelectrochemical Investigation of Alloy C22 in Chloride Solutions below the Critical Pitting Temperature. Journal of the Electrochemical Society, 2007, 154, C114.	2.9	6
54	Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy. Corrosion Science, 2007, 49, 2002-2020.	6.6	128

PATRIK SCHMUTZ

#	Article	IF	CITATIONS
55	Electrochemical Characterization of Submicrometer Structures. ECS Transactions, 2006, 3, 29-37.	0.5	4
56	The Role of Inclusions in the Corrosion Resistance of Hydrostatically Extruded Steel Products. Solid State Phenomena, 2006, 114, 189-198.	0.3	6
57	Influence of Composition and Roughness on Localized Corrosion of Al-Mg-Si Alloys Characterized by Microelectrochemistry. Materials Science Forum, 2006, 519-521, 635-640.	0.3	2
58	Analytical Characterization of the Corrosion Mechanisms of WC-Co by Electrochemical Methods and Inductively-Coupled Plasma Mass Spectroscopy. ECS Transactions, 2006, 1, 251-262.	0.5	2
59	Quantitative element mapping of Mg alloys by laser ablation ICP-MS and EPMA. Applied Surface Science, 2005, 252, 127-132.	6.1	27
60	Impedance Characterization and Modeling of Electrodes for Biomedical Applications. IEEE Transactions on Biomedical Engineering, 2005, 52, 1295-1302.	4.2	541
61	Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces. Biotechnology and Bioengineering, 2005, 91, 285-295.	3.3	22
62	Microelectrochemical Studies of Pit Initiation on High Purity and Ultra High Purity Aluminum. Advanced Engineering Materials, 2005, 7, 339-348.	3.5	45
63	Influence of Dichromate Ions on Corrosion Processes on Pure Magnesium. Journal of the Electrochemical Society, 2003, 150, B99.	2.9	111
64	Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings. Corrosion, 2002, 58, 3-14.	1.1	165
65	Effect of Chromate on Open-Circuit Pit Growth in Aluminum Thin Films. Corrosion, 2002, 58, 137-144.	1.1	2
66	Characterization of Corrosion Interfaces by the Scanning Kelvin Probe Force Microscopy Technique. Journal of the Electrochemical Society, 2001, 148, B163.	2.9	237
67	Electrochemical Behavior of Thin Film Analogs of Mg(Zn, Cu, Al)[sub 2]. Journal of the Electrochemical Society, 2001, 148, B348.	2.9	112
68	Formation of Chromate Conversion Coatings on Al-Cu-Mg Intermetallic Compounds and Alloys. Journal of the Electrochemical Society, 2000, 147, 4494.	2.9	70
69	Electrochemical quartz crystal microbalance study of the transient response of passive Feî—,25Cr alloy. Electrochimica Acta, 1999, 45, 899-911.	5.2	29
70	In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution. Corrosion Science, 1999, 41, 2143-2163.	6.6	57
71	Influence of Dichromate Ions on Corrosion of Pure Aluminum and AA2024â€T3 in NaCl Solution Studied by AFM Scratching. Journal of the Electrochemical Society, 1999, 146, 4461-4472.	2.9	98
72	Corrosion Study of AA2024â€T3 by Scanning Kelvin Probe Force Microscopy and In Situ Atomic Force Microscopy Scratching. Journal of the Electrochemical Society, 1998, 145, 2295-2306.	2.9	275

PATRIK SCHMUTZ

#	Article	IF	CITATIONS
73	Characterization of AA2024â€T3 by Scanning Kelvin Probe Force Microscopy. Journal of the Electrochemical Society, 1998, 145, 2285-2295.	2.9	385
74	Polymer-metal interface formation and film growth on plasma and ion-treated polymer surfaces. Surface and Interface Analysis, 1993, 20, 416-420.	1.8	12
75	A Preliminary Quantitative XPS Study of the Surface Films Formed on Pure Magnesium and on Magnesium-Aluminium Intermetallics by Exposure to High-Purity Water. Materials Science Forum, 0, 618-619, 255-262.	0.3	5
76	The Influence of Heat Treatment and Plastic Deformation on the Bio-Degradation of a Mg–Y–RE Alloy. Materials Science Forum, 0, 618-619, 71-74.	0.3	1
77	Corrosion of AZ91 - Influence of the β-Phase Morphology. Materials Science Forum, 0, 618-619, 473-478.	0.3	14